Skip to main content
Log in

Influence of pyrophosphate on the exchange of calcium and phosphate ions on hydroxyapatite

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The effect of pyrophosphate on the distribution and the rates of exchange of calcium and phosphate in hydroxyapatite crystals was studied. Analysis of disappearance of45Ca,32P [Pi] and32P [PPi] from the solution onto the crystals was performed using a compartmental model. The disappearance curves were described by the sum of 4 exponentials, which was interpreted as a four-compartment model in series. Pyrophosphate was present in all the four pools of the crystals. Treatment of crystal with pyrophosphate led to a large decrease of exchangeable phosphate, and two of the four compartments disappeared completely. The quantitative data suggest a replacement of 2 moles of orthophosphate by 1 mole of pyrophosphate. Pyrophosphate had no appreciable effect on the distribution and the fluxes of calcium. The implications of these results for the inhibitory effects of pyrophosphate on the formation and dissolution of apatite crystals are discussed.

Résumé

L'effet du pyrophosphate sur la distribution et les vitesses d'échange du calcium et du phosphate dans les cristaux d'hydroxyapatite a été étudié. Les analyses de disparition du45Ca, du32P [Pi] et du32P [PPi] de la solution vers les cristaux ont été réalisées en utilisant un modèle de compartimenst. Les courbes de disparition sont formées par la somme de 4 exponentielles, correspondant à un modèle de 4 compartiments en séries. Le pyrophosphate est présent dans les 4 compartiments du cristal. Le traitement du cristal avec le pyrophosphate provoque une diminution nette du phosphate échangeable et deux des quatre compartiments disparaissent totalement. Les données quantitatives suggèrent une substitution de 2 moles d'orthophosphate par mole de pyrophosphate. Le pyrophosphate n'a pas d'effet net sur la distribution et les échanges de calcium. Les conséquences de ces résultats sur les effets d'inhibition du pyrophosphate sur la formation et la dissolution des cristaux d'apatite sont discutées.

Zusammenfassung

Die Wirkung von Pyrophosphat auf die Verteilung und die Austauschrate von Calcium und Phosphat in Hydroxyapatitkristallen wurde untersucht. Das Verschwinden von45Ca,32P [Pi] und32P [PPi] aus der Lösung und die Anlagerung dieser Ionen auf den Kristallen wurde anhand eines Kompartiment-Modelles studiert. Die Verschwinde-Kurven wurden durch die Summe von 4 Exponentiellen beschrieben und mittels einem Modell von 4 Kompartimenten in Serie interpretiert. Wurde der Lösung Pyrophosphat zugesetzt, so war es in allen 4 Kompartimenten vorhanden. Ferner entstand eine starke Verminderung des austauschbaren Phosphates, wobei 2 der 4 Kompartimente vollständig verschwanden und 2 Mode Orthophosphat mit 1 Mol Pyrophosphat ausgetauscht wurden. Pyrosphosphat hatte keine nennenswerte Wirkung auf die Verteilung und die Flüsse des Calciums. Diese Befunde werden im Zusammenhang mit der Hemmwirkung des Pyrophosphates bei der Bildung und Auflösung von Apatitkristallen besprochen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avnimelech, Y.: Analysis of P32 and Ca45 exchange between hydroxyapatite and its equilibrium solution. Israel J. Chem.6, 375–385 (1968).

    Google Scholar 

  • Berman, M.: Compartmental analysis in kinetics. In: Computers in biomedical research (R. Stacey and B. Waxman, eds.), vol. 2, chapter 7. New York: Acaademic Press 1965.

    Google Scholar 

  • Berman, M., Shahn, E., Weiss, M. F.: The routine fitting of kinetic data to models: A mathematical formalism for digital computers. Biophys. J.2, 275–288 (1962a).

    PubMed  Google Scholar 

  • Berman, M., Weiss, M. F., Shahn, E.: Some formal approaches to the analysis of kinetic data in terms of linear compartmental systems. Biophys. J.2, 289–302 (1962b).

    PubMed  Google Scholar 

  • Best, J. B.: Some theoretical considerations concerning crystals with relevance to the physical properties of bone. Biochim. biophys. Acta (Amst.)32, 194–202 (1959).

    Google Scholar 

  • Bisaz, S., Russell, R. G. C., Fleisch, H.: Isolation of inorganic pyrophosphate from bovine and human teeth. Arch. oral Biol.13, 683–696 (1968).

    PubMed  Google Scholar 

  • Burton, F. G., Neuman, M. W., Neuman, W. F.: On the possible role of crystals in the origins of life. I. The adsorption of nucleosides, nucleotides and pyrophosphate by apatite crystals. Curr. mod. Biol.3, 20–26 (1969).

    PubMed  Google Scholar 

  • Cartier, P.: La minéralisation du cartilage ossifiable. VIII. Les pyrophosphates du tissu osseux. Bull. Soc. Chim. biol. (Paris)41, 573–583 (1959).

    Google Scholar 

  • Chen, P. S., Toribara, T. Y., Warner, H.: Microdetermination of phosphorus. Analyt. Chem.28, 1756–1758 (1956).

    Google Scholar 

  • Dallemagne, M. J.: Le calcium dans le squelette et les dents. In: Handbuch der experimentellen Pharmakologie, Bd. XVII/2 (O. Eichler, A. Farah, Hrsg.), S. 273–476. Berlin-Göttingen-Heidelberg-New York: Springer 1964.

    Google Scholar 

  • Damme, M. A. van: The influence of ferrocyanide complexes on the dissolution of sodium chloride. In: Adsorption et croissance cristalline, p. 433–449. Paris: Editions du Centre National de la Recherche Scientifique 1965.

    Google Scholar 

  • Fleisch, H., Bisaz, S.: Isolation from urine of pyrophosphate, a calcification inhibitor. Amer. J. Physiol.203, 671–675 (1962).

    PubMed  Google Scholar 

  • Fleisch, H., Maerki, J., Russell, R. G. G.: Effect of pyrophosphate on dissolution of hydroxyapatite and its possible importance in calcium homeostasis. Proc. Soc. exp. Biol. Med. (N.Y.)122, 317–320 (1966a).

    Google Scholar 

  • Fleisch, H., Neuman, W. F.: Mechanisms of calcification: role of collagen, polyphosphates, and phosphatase. Amer. J. Physiol.200, 1296–1300 (1961).

    PubMed  Google Scholar 

  • Fleisch, H., Russell, R. G. G.: Phyrophosphate and polyphosphate. Chap. 3 in the International Encyclopedia of Pharmacology and Therapeutics, Section 51 (G. Peters and C. Radouco-Thomas, eds.), p. 61–100. London: Pergamon Press 1970.

    Google Scholar 

  • Fleisch, H., Russell, R. G. G., Straumann, F.: Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature (Lond.)212, 901–903 (1966b).

    Google Scholar 

  • Francis, M. D., Gray, J. A., Griebstein, W. J.: The formation and influence of surface phases on calcium phosphate solids. Advanc. oral Biol.3, 83–119 (1968).

    Google Scholar 

  • Gabbiani, G., Jacqmin, M. L., Richard, R. M.: Soft-tissue calcification induced by rare earth metals and its prevention by sodium pyrophosphate. Brit. J. Pharmacol.27, 1–9 (1966).

    Google Scholar 

  • Gray, J. A.: Kinetics of enamel dissolution during formation of incipient caries-like lesions. Arch. oral Biol.11, 397–421 (1966).

    PubMed  Google Scholar 

  • Hall, R. J.: An improved method for the microdetermination of inorganic phosphate in small volumes of biological fluids. J. med. Lab. Technol.20, 97–103 (1963).

    PubMed  Google Scholar 

  • Hausmann, E., Bisaz, S., Russell, R. G. G., Fleisch, H.: The concentration of inorganic pyrophosphate in human saliva and dental calculus. Arch. oral Biol.15, 1389–1392 (1970).

    PubMed  Google Scholar 

  • Jung, A., Bisaz, S., Fleisch, H.: The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif. Tiss. Res.11, 269–280 (1973).

    Google Scholar 

  • Krane, S. M., Glimcher, M. J.: Transphosphorylation from nucleoside di- and triphosphates by apatite crystals. J. biol. Chem.237, 2991–2998 (1962).

    PubMed  Google Scholar 

  • Mutaftschiev, B., Chajes, H., Gindt, R.: Cinétique de dissolution de NaCl et adsorption des ions cadmium. In: Adsorption et croissance cristalline, p. 419–432. Paris: Editions du Centre National de la Recherche Scientifique 1965.

    Google Scholar 

  • Neuman, W. F., Neuman, M. W.: The chemical dynamics of bone mineral. Chicago, Ill.: Chicago Univ. Press 1958.

    Google Scholar 

  • Neuman, W. F., Toribara, T. Y., Mulryan, B. J.: The surface chemistry of bone. VII. The hydration shell. J. Amer. chem. Soc.75, 4239–4242 (1953).

    Google Scholar 

  • Nielsen, A. E.: Kinetics of precipitation. Oxford: Pergamon Press 1964.

    Google Scholar 

  • Pak, C. Y. C., Bartter, F. C.: Ionic interaction with bone mineral. I. Evidence for an isoionic calcium exchange with hydroxyapatite. Biochim. biophys. Acta (Amst.)141, 401–409 (1967).

    Google Scholar 

  • Pak, C. Y. C., Diller, E. C.: Ionic interaction with bone mineral. V. Effect of Mg2+, Citrate3−, F and SO4 2− on the solubility, dissolution and growth of bone mineral. Calcif. Tiss. Res.4, 69–77 (1969).

    Google Scholar 

  • Perkins, H. R., Walker, P. G.: The occurrence of pyrophosphate in bone. J. Bone Jt Surg. B40, 333–339 (1958).

    Google Scholar 

  • Rasmussen, H., Feinblatt, J., Nagata, N., DeLong, A.: Regulation of bone cell function. In: Osteoporosis (U. S. Barzel, ed.), p. 187–198. New York-London: Grune & Stratton 1970.

    Google Scholar 

  • Riggs, D. S.: The mathematical approach to physiological problems. Baltimore: Williams & Wilkins 1963.

    Google Scholar 

  • Robertson, J. S.: Theory and use of tracers in determining transfer rates in biological systems. Physiol. Rev.37, 133–154 (1957).

    PubMed  Google Scholar 

  • Robertson, W. G., Morgan, D. B.: Effect of pyrophosphate on the exchangeable calcium pool of hydroxyapatite crystals. Biochim. biophys. Acta (Amst.)230, 495–503 (1971).

    Google Scholar 

  • Russell, R. G. C., Bisaz, S., Donath, A., Morgan, D. B., Fleisch, H.: Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta and other disorders of bone. J. clin. Invest.50, 961–969 (1971).

    PubMed  Google Scholar 

  • Schibler, D., Fleisch, H.: Inhibition of skin calcification (calciphylaxis) by polyphosphates. Experientia (Basel)22, 367 (1966).

    Google Scholar 

  • Schibler, D., Russell, R. G. G., Fleisch, H.: Inhibition by pyrophosphate and polyphosphate of aortic calcification induced by vitamin D3 in rats. Clin. Sci.35, 363–372 (1968).

    PubMed  Google Scholar 

  • Težak, B.: Solid/liquid interfaces. Croat. chem. Acta42, 81–110 (1970).

    Google Scholar 

  • Zimmermann, S. O.: A mathematical theory of enamel solubility and the onset of dental caries: III. Development and computer simulation for a model of caries formation. Bull. math. Biophys.28, 443–464 (1966).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, A., Bisaz, S., Bartholdi, P. et al. Influence of pyrophosphate on the exchange of calcium and phosphate ions on hydroxyapatite. Calc. Tis Res. 13, 27–40 (1973). https://doi.org/10.1007/BF02015393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02015393

Key words

Navigation