Calcified Tissue Research

, Volume 13, Issue 1, pp 27–40 | Cite as

Influence of pyrophosphate on the exchange of calcium and phosphate ions on hydroxyapatite

  • A. Jung
  • S. Bisaz
  • P. Bartholdi
  • H. Fleisch
Original Papers


The effect of pyrophosphate on the distribution and the rates of exchange of calcium and phosphate in hydroxyapatite crystals was studied. Analysis of disappearance of45Ca,32P [Pi] and32P [PPi] from the solution onto the crystals was performed using a compartmental model. The disappearance curves were described by the sum of 4 exponentials, which was interpreted as a four-compartment model in series. Pyrophosphate was present in all the four pools of the crystals. Treatment of crystal with pyrophosphate led to a large decrease of exchangeable phosphate, and two of the four compartments disappeared completely. The quantitative data suggest a replacement of 2 moles of orthophosphate by 1 mole of pyrophosphate. Pyrophosphate had no appreciable effect on the distribution and the fluxes of calcium. The implications of these results for the inhibitory effects of pyrophosphate on the formation and dissolution of apatite crystals are discussed.

Key words

Pyrophosphate Calcium Phosphate Kinetics Hydroxyapatite 


L'effet du pyrophosphate sur la distribution et les vitesses d'échange du calcium et du phosphate dans les cristaux d'hydroxyapatite a été étudié. Les analyses de disparition du45Ca, du32P [Pi] et du32P [PPi] de la solution vers les cristaux ont été réalisées en utilisant un modèle de compartimenst. Les courbes de disparition sont formées par la somme de 4 exponentielles, correspondant à un modèle de 4 compartiments en séries. Le pyrophosphate est présent dans les 4 compartiments du cristal. Le traitement du cristal avec le pyrophosphate provoque une diminution nette du phosphate échangeable et deux des quatre compartiments disparaissent totalement. Les données quantitatives suggèrent une substitution de 2 moles d'orthophosphate par mole de pyrophosphate. Le pyrophosphate n'a pas d'effet net sur la distribution et les échanges de calcium. Les conséquences de ces résultats sur les effets d'inhibition du pyrophosphate sur la formation et la dissolution des cristaux d'apatite sont discutées.


Die Wirkung von Pyrophosphat auf die Verteilung und die Austauschrate von Calcium und Phosphat in Hydroxyapatitkristallen wurde untersucht. Das Verschwinden von45Ca,32P [Pi] und32P [PPi] aus der Lösung und die Anlagerung dieser Ionen auf den Kristallen wurde anhand eines Kompartiment-Modelles studiert. Die Verschwinde-Kurven wurden durch die Summe von 4 Exponentiellen beschrieben und mittels einem Modell von 4 Kompartimenten in Serie interpretiert. Wurde der Lösung Pyrophosphat zugesetzt, so war es in allen 4 Kompartimenten vorhanden. Ferner entstand eine starke Verminderung des austauschbaren Phosphates, wobei 2 der 4 Kompartimente vollständig verschwanden und 2 Mode Orthophosphat mit 1 Mol Pyrophosphat ausgetauscht wurden. Pyrosphosphat hatte keine nennenswerte Wirkung auf die Verteilung und die Flüsse des Calciums. Diese Befunde werden im Zusammenhang mit der Hemmwirkung des Pyrophosphates bei der Bildung und Auflösung von Apatitkristallen besprochen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avnimelech, Y.: Analysis of P32 and Ca45 exchange between hydroxyapatite and its equilibrium solution. Israel J. Chem.6, 375–385 (1968).Google Scholar
  2. Berman, M.: Compartmental analysis in kinetics. In: Computers in biomedical research (R. Stacey and B. Waxman, eds.), vol. 2, chapter 7. New York: Acaademic Press 1965.Google Scholar
  3. Berman, M., Shahn, E., Weiss, M. F.: The routine fitting of kinetic data to models: A mathematical formalism for digital computers. Biophys. J.2, 275–288 (1962a).PubMedGoogle Scholar
  4. Berman, M., Weiss, M. F., Shahn, E.: Some formal approaches to the analysis of kinetic data in terms of linear compartmental systems. Biophys. J.2, 289–302 (1962b).PubMedGoogle Scholar
  5. Best, J. B.: Some theoretical considerations concerning crystals with relevance to the physical properties of bone. Biochim. biophys. Acta (Amst.)32, 194–202 (1959).Google Scholar
  6. Bisaz, S., Russell, R. G. C., Fleisch, H.: Isolation of inorganic pyrophosphate from bovine and human teeth. Arch. oral Biol.13, 683–696 (1968).PubMedGoogle Scholar
  7. Burton, F. G., Neuman, M. W., Neuman, W. F.: On the possible role of crystals in the origins of life. I. The adsorption of nucleosides, nucleotides and pyrophosphate by apatite crystals. Curr. mod. Biol.3, 20–26 (1969).PubMedGoogle Scholar
  8. Cartier, P.: La minéralisation du cartilage ossifiable. VIII. Les pyrophosphates du tissu osseux. Bull. Soc. Chim. biol. (Paris)41, 573–583 (1959).Google Scholar
  9. Chen, P. S., Toribara, T. Y., Warner, H.: Microdetermination of phosphorus. Analyt. Chem.28, 1756–1758 (1956).Google Scholar
  10. Dallemagne, M. J.: Le calcium dans le squelette et les dents. In: Handbuch der experimentellen Pharmakologie, Bd. XVII/2 (O. Eichler, A. Farah, Hrsg.), S. 273–476. Berlin-Göttingen-Heidelberg-New York: Springer 1964.Google Scholar
  11. Damme, M. A. van: The influence of ferrocyanide complexes on the dissolution of sodium chloride. In: Adsorption et croissance cristalline, p. 433–449. Paris: Editions du Centre National de la Recherche Scientifique 1965.Google Scholar
  12. Fleisch, H., Bisaz, S.: Isolation from urine of pyrophosphate, a calcification inhibitor. Amer. J. Physiol.203, 671–675 (1962).PubMedGoogle Scholar
  13. Fleisch, H., Maerki, J., Russell, R. G. G.: Effect of pyrophosphate on dissolution of hydroxyapatite and its possible importance in calcium homeostasis. Proc. Soc. exp. Biol. Med. (N.Y.)122, 317–320 (1966a).Google Scholar
  14. Fleisch, H., Neuman, W. F.: Mechanisms of calcification: role of collagen, polyphosphates, and phosphatase. Amer. J. Physiol.200, 1296–1300 (1961).PubMedGoogle Scholar
  15. Fleisch, H., Russell, R. G. G.: Phyrophosphate and polyphosphate. Chap. 3 in the International Encyclopedia of Pharmacology and Therapeutics, Section 51 (G. Peters and C. Radouco-Thomas, eds.), p. 61–100. London: Pergamon Press 1970.Google Scholar
  16. Fleisch, H., Russell, R. G. G., Straumann, F.: Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature (Lond.)212, 901–903 (1966b).Google Scholar
  17. Francis, M. D., Gray, J. A., Griebstein, W. J.: The formation and influence of surface phases on calcium phosphate solids. Advanc. oral Biol.3, 83–119 (1968).Google Scholar
  18. Gabbiani, G., Jacqmin, M. L., Richard, R. M.: Soft-tissue calcification induced by rare earth metals and its prevention by sodium pyrophosphate. Brit. J. Pharmacol.27, 1–9 (1966).Google Scholar
  19. Gray, J. A.: Kinetics of enamel dissolution during formation of incipient caries-like lesions. Arch. oral Biol.11, 397–421 (1966).PubMedGoogle Scholar
  20. Hall, R. J.: An improved method for the microdetermination of inorganic phosphate in small volumes of biological fluids. J. med. Lab. Technol.20, 97–103 (1963).PubMedGoogle Scholar
  21. Hausmann, E., Bisaz, S., Russell, R. G. G., Fleisch, H.: The concentration of inorganic pyrophosphate in human saliva and dental calculus. Arch. oral Biol.15, 1389–1392 (1970).PubMedGoogle Scholar
  22. Jung, A., Bisaz, S., Fleisch, H.: The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif. Tiss. Res.11, 269–280 (1973).Google Scholar
  23. Krane, S. M., Glimcher, M. J.: Transphosphorylation from nucleoside di- and triphosphates by apatite crystals. J. biol. Chem.237, 2991–2998 (1962).PubMedGoogle Scholar
  24. Mutaftschiev, B., Chajes, H., Gindt, R.: Cinétique de dissolution de NaCl et adsorption des ions cadmium. In: Adsorption et croissance cristalline, p. 419–432. Paris: Editions du Centre National de la Recherche Scientifique 1965.Google Scholar
  25. Neuman, W. F., Neuman, M. W.: The chemical dynamics of bone mineral. Chicago, Ill.: Chicago Univ. Press 1958.Google Scholar
  26. Neuman, W. F., Toribara, T. Y., Mulryan, B. J.: The surface chemistry of bone. VII. The hydration shell. J. Amer. chem. Soc.75, 4239–4242 (1953).Google Scholar
  27. Nielsen, A. E.: Kinetics of precipitation. Oxford: Pergamon Press 1964.Google Scholar
  28. Pak, C. Y. C., Bartter, F. C.: Ionic interaction with bone mineral. I. Evidence for an isoionic calcium exchange with hydroxyapatite. Biochim. biophys. Acta (Amst.)141, 401–409 (1967).Google Scholar
  29. Pak, C. Y. C., Diller, E. C.: Ionic interaction with bone mineral. V. Effect of Mg2+, Citrate3−, F and SO4 2− on the solubility, dissolution and growth of bone mineral. Calcif. Tiss. Res.4, 69–77 (1969).Google Scholar
  30. Perkins, H. R., Walker, P. G.: The occurrence of pyrophosphate in bone. J. Bone Jt Surg. B40, 333–339 (1958).Google Scholar
  31. Rasmussen, H., Feinblatt, J., Nagata, N., DeLong, A.: Regulation of bone cell function. In: Osteoporosis (U. S. Barzel, ed.), p. 187–198. New York-London: Grune & Stratton 1970.Google Scholar
  32. Riggs, D. S.: The mathematical approach to physiological problems. Baltimore: Williams & Wilkins 1963.Google Scholar
  33. Robertson, J. S.: Theory and use of tracers in determining transfer rates in biological systems. Physiol. Rev.37, 133–154 (1957).PubMedGoogle Scholar
  34. Robertson, W. G., Morgan, D. B.: Effect of pyrophosphate on the exchangeable calcium pool of hydroxyapatite crystals. Biochim. biophys. Acta (Amst.)230, 495–503 (1971).Google Scholar
  35. Russell, R. G. C., Bisaz, S., Donath, A., Morgan, D. B., Fleisch, H.: Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta and other disorders of bone. J. clin. Invest.50, 961–969 (1971).PubMedGoogle Scholar
  36. Schibler, D., Fleisch, H.: Inhibition of skin calcification (calciphylaxis) by polyphosphates. Experientia (Basel)22, 367 (1966).Google Scholar
  37. Schibler, D., Russell, R. G. G., Fleisch, H.: Inhibition by pyrophosphate and polyphosphate of aortic calcification induced by vitamin D3 in rats. Clin. Sci.35, 363–372 (1968).PubMedGoogle Scholar
  38. Težak, B.: Solid/liquid interfaces. Croat. chem. Acta42, 81–110 (1970).Google Scholar
  39. Zimmermann, S. O.: A mathematical theory of enamel solubility and the onset of dental caries: III. Development and computer simulation for a model of caries formation. Bull. math. Biophys.28, 443–464 (1966).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • A. Jung
    • 3
    • 1
    • 2
  • S. Bisaz
    • 3
    • 1
    • 2
  • P. Bartholdi
    • 3
    • 1
    • 2
  • H. Fleisch
    • 3
    • 1
    • 2
  1. 1.ObservatoryUniversity of GenuaGenua
  2. 2.Laboratory for Experimental SurgeryDavos
  3. 3.Pathophysiological InstituteUniversity of BerneBerneSwitzerland

Personalised recommendations