Skip to main content

Advertisement

Log in

Inhibition of calcium phosphate mineral growth by proteoglycan aggregate fractions in a synthetic lymph

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The effect of proteoglycans on growth of seeding minerals in synthetic lymph was studied with special reference to regulation of endochondral calcification. Proteoglycans were isolated from bovine nasal cartilage by three published methods. By each method two fractions were separated which differed in respect to presence or absence of fast-sedimenting components on analytical ultracentrifugation. Each fraction was tested for its capacity to inhibit mineral growth in a buffered synthetic lymphin vitro. At concentrations of proteoglycans estimated to occur in the interstitial fluid of endochondral plates from 6- to 7-week-old rats, the fractions containing fast-sedimenting components were inhibitory to mineral growth; whereas fractions containing the slow-sedimenting components and a glycoprotein (link protein) had no inhibitory activity demonstrable in these systems. Comparison of calcium-binding capacity of certain proteoglycan fractions as well as their computed effect upon reduction of calcium activity under conditions of equilibrium dialysis revealed no differences in the behavior of a proteoglycan fraction rich in fast—as opposed to fractions composed entirely of slow-sedimenting components. An increased degree of shielding of mineral embryos provided by adjacent protein cores of aggregated proteoglycans is hypothesized to explain the inhibitory action of fast-sedimenting proteoglycans on mineral growthin vitro.

Résumé

L'effet des protéoglycanes sur la croissance de minéraux d'ensemencement dans un milieu synthétique est étudié sous l'angle de la régulation de l'ossification enchondrale. Les protéoglycanes sont isolés à partir ducartilage nasal bovin à l'aide de trois méthodes publiées. A l'aide de chacune de ces méthodes, deux fractions sont isolées qui se distinguent par la présence ou l'absence de composés qui se sédimentent rapidement par ultracentrifugation analytique. Chaque fraction est étudiée en fonction de sa possibilité d'inhiber la croissance minérale dans un milieu tamponné synthétiquein vitro. A des concentrations de protéoglycanes qui se retrouvent dans le liquide interstitielle de la métaphyse de rats de 6 à 7 semaines, les fractions contenant des composés qui se sédimentent rapidement, inhibent la croissance minérale; alors que les fractions contenant des composés, qui sédimentent lentement, ainsi qu'une glycoprotéine (protéine de liaison) n'ont pas d'activité d'inhibition dans ces systèmes.

La comparaison de la capacité de fixation du calcium de certaines fonctions de protéoglycanes ainsi que leur effet sur la diminution de l'activité calcique dans des conditions de dialyse équilibrées ne montrent aucune différence sur le comportement des fractions de protéoglycanes comportant des produits sédimentant rapidement ou lentement. Un degré plus élevé de protection des minéraux naissants, fournie par les portions protéiques adjacentes de protéoglycanes agrégés, pourrait être responsable de l'action d'inhibition de croissance minéralein vitro de protéoglycanes sédimentant rapidement.

Zusammenfassung

Die Wirkung von Proteoglykanen auf das Wachstum von Impfkristallen in synthetischer Lymphe wurde, mit besonderer Berücksichtigung der Regulation von endochondraler Verkalkung, studiert. Die Proteoglykane wurden nach drei publizierten Methoden aus dem Nasenknorpel des Rindes isoliert. Bei jeder Methode wurden zwei Fraktionen abgetrennt, welche sich bei der analytischen Ultrazentrifugation in bezug auf An- oder Abwesenheit von schnellsedimentierenden Komponenten unterschieden. Jede Fraktion wurde darauf geprüft, ob siein vitro das Mineralwachstum in einer gepufferten synthetischen Lymphe zu hemmen vermochte. Bei Proteoglykan-Konzentrationen, wie sie in der interstitiellen Flüssigkeit endochondraler Platten von 6 bis 7 Wochen alten Ratten vermutet werden, hatten diejenigen Fraktionen, welche schnell-sedimentierende Komponenten enthielten, eine Hemmwirkung auf das Mineralwachstum; Fraktionen mit langsam-sedimentierenden Komponenten und mit einem Glycoprotein („link protein”) hingegen zeigten in diesen Systemen keine Hemmwirkung.

Der Vergleich der Calcium-bindenden Fähigkeit bestimmter Proteoglykan-Fraktionen sowie deren vereinte Wirkung auf die Herabsetzung der Calcium-Aktivität unter Bedingungen der Gleichgewichtsdialyse zeigte keine Unterschiede im Verhalten von Proteoglykan-Fraktionen, die reich an schnell-sedimentierenden Komponenten waren im Gegensatz zu Fraktionen, welche ausschließlich langsam-sedimentierende Komponenten enthielten. Die Hemmwirkung von schnell-sedimentierenden Proteoglykanen auf das Mineralwachstumin vitro wird mit folgender Hypothese erklärt: Die Mineralkeime werden in zunehmendem Maße durch angrenzende Proteinkerne angehäufter Proteoglykane geschützt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boas, NF.: Method for determination of hexosamines in tissues. J. biol. Chem.204, 553–563 (1953).

    PubMed  Google Scholar 

  2. Bonucci, E.: The locus of initial calcification in cartilage and bone. Clin. Orthop.78, 108–139 (1971).

    PubMed  Google Scholar 

  3. Bowness, J.C.: Present concepts of the role of ground substance in calcification. Clin. Orthop.59, 233–244 (1968).

    PubMed  Google Scholar 

  4. Boyd, E.S., Newman, W.F.: The surface chemistry of bone. V. The ion-binding properties of cartilage. J. biol. Chem.193, 243–251 (1951).

    PubMed  Google Scholar 

  5. Campo, R.D., Dziewiatkowski, D.D.: Turnover of the organic matrix of cartilage and bone as visualized by autoradiography. J. Cell Biol.18, 19–29 (1963).

    PubMed  Google Scholar 

  6. Campo, R.D.: Proteinpolysaccharides of cartilage and bone in health and disease. Clin. Orthop.68, 182–209 (1970).

    PubMed  Google Scholar 

  7. Cotlove, E., Trantham, H.V., Bowman, R.L.: An instrument for automatic, rapid, accurate and sensitive titration of chloride in biological samples. J. Lab. clin. Med.51, 461–468 (1958).

    PubMed  Google Scholar 

  8. Cuervo, L.A., Pita, J.C., Howell, D.S.: Ultramicroanalysis of pH,\(P_{CO_2 } \) and carbonic anhydrase activity at calcifying sites in cartilage. Calcif. Tiss. Res.7, 220–231 (1971).

    Google Scholar 

  9. DiSalvo, J., Schubert, M.: Specific interaction of some cartilage proteinpolysaccharides with freshly precipitating calcium phosphate. J. biol. Chem.242, 705–710 (1967).

    PubMed  Google Scholar 

  10. Dische, Z.: A new specific color reaction of hexuronic acids. J. biol. Chem.167, 189–198 (1947).

    Google Scholar 

  11. Dunstone, J.R.: Some cation-binding properties of cartilage. Biochem. J.72, 465–473 (1959).

    PubMed  Google Scholar 

  12. Dziewiatkowski, D.D., Tourtellotte, C.D., Campo, R.D.: Degradation of proteinpolysaccharide (chondromucoprotein) by an enzyme extracted from cartilage. In: The chemical physiology of mucopolysaccharides (ed. by G. Quintarelli), p. 63–79. Boston: Little, Brown & Co. 1967.

    Google Scholar 

  13. Farber, S.J., Schubert, M.: The binding of cations by chondroitin sulfate. J. clin. Invest.36, 1715–1722 (1957).

    PubMed  Google Scholar 

  14. Franek, M.D., Dunstone, J.R.: Connective tissue proteinpolysaccharides. J. biol. Chem.242, 3460–3467 (1967).

    Google Scholar 

  15. Glimcher, J.D.: Specificity of the molecular structure of organic matrices in mineralization. In: Calcification in biological systems (ed. by R.F. Sognnaes), p. 421–487. Washington, D. C.: American Association for Advancement of Science 1960.

    Google Scholar 

  16. Hascall, V.C., Sajdera, S.W.: Proteinpolysaccharide complex from bovine nasal cartilage. Function of glycoprotein in the formation of aggregates. J. biol. Chem.244, 2384–2396 (1969).

    PubMed  Google Scholar 

  17. Helfferich, F.: Ion exchange, p. 141–145 and 169–171. New York: McGraw Hill Book Co. Inc. 1962.

    Google Scholar 

  18. Herring, G.M.: A review of recent advances in the chemistry of calcifying cartilage and bone matrix. Calcif. Tiss. Res.4, Suppl., 17–23 (1970).

    Google Scholar 

  19. Howell, D.S., Pita, J.C., Madruga, J.E., Muller, F.J.: Role of protein-polysaccharide aggregates as biological inhibitors of mineral growth. In: Cellular mechanism for calcium transfer and homeostasis (ed. by G. Nichols, Jr. and R.H. Wasserman), p. 460–461. New York: Academic Press, Inc. 1971.

    Google Scholar 

  20. Howell, D.S., Pita, J.C., Marquez, J.F., Madruga, J.E.: Partition of calcium, phosphate, and protein in the fluid phase aspirated at calcifying sites in epiphyseal cartilage. J. clin. Invest.47, 1121–1132 (1968).

    PubMed  Google Scholar 

  21. Howell, D.S., Pita, J.C., Marquez, J.F., Gatter, R.A.: Demonstration of macromolecular inhibitor(s) of calcification and nucleational factor(s) in fluid from calcifying sites in cartilage. J. clin. Invest.48, 630–641 (1969).

    PubMed  Google Scholar 

  22. Kagawa, I., Katsuura, K.: Activity coefficients of by-ions and ionic strength of polyelectrolyte solutions. J. Polymer Science9, 405–412 (1952).

    Google Scholar 

  23. Keiser, H., Shulman, H.J., Sandson, J.I.: Immunochemistry of cartilage proteoglycan. Biochem. J.126, 163–169 (1972).

    PubMed  Google Scholar 

  24. Kuttner, R., Cohen, H.R.: Colorimetric determination of inorganic phosphate. J. biol. Chem.75, 517–531 (1927).

    Google Scholar 

  25. Leyendekkers, J.V., Whitfield, M.: Measurement of activity coefficients with liquid ionexchange electrodes for the system calcium (II)—sodium (I)—chloride (I)—water. J. Phys. Chem.75, 957–963 (1971).

    Google Scholar 

  26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265–275 (1951).

    PubMed  Google Scholar 

  27. Nagasawa, M., Izumi, M., Kagawa, I.: Colligative properties of polyelectrolyte solutions. V. Activity coefficients of counter- and by-ions. J. Polymer Science37, 375–381 (1959).

    Google Scholar 

  28. Pal, S., Doganges, P.T., Schubert, M.: The separation of new form of proteinpolysaccharides of bovine nasal cartilage. J. biol. Chem.241, 4261–4266 (1966).

    PubMed  Google Scholar 

  29. Pita, J.C., Cuervo, L.A., Madruga, J.E., Muller, F.J., Howell, D.S.: Evidence for a role of proteinpolysaccharides in regulation of mineral phase separation in calcifying cartilage. J. clin. Invest.49, 2188–2197 (1970).

    PubMed  Google Scholar 

  30. Rosenberg, L., Pal, S., Beale, R., Schubert, M.: A comparison of proteinpolysaccharides of bovine nasal cartilage isolated and fractionated by different methods. J. biol. Chem.245, 4112–4122 (1970a).

    PubMed  Google Scholar 

  31. Rosenberg, L., Hellman, W., Kleinschmidt, A.K.: Macromolecular models of proteinpolysaccharides from bovine nasal cartilage based on electron microscopic studies. J. biol. Chem.245, 4123–4130 (1970b).

    PubMed  Google Scholar 

  32. Sajdera, D.A., Hascall, V.C.: Proteinpolysaccharide complex from bovine nasal cartilage. Comparison of low and high shear extraction procedures. J. biol. Chem.244, 77–87 (1969).

    PubMed  Google Scholar 

  33. Schubert, M., Pras, M.: Ground substance proteinpolysaccharides and precipitation of calcium phosphate. Clin. Orthop.60, 235–255 (1968).

    PubMed  Google Scholar 

  34. Smales, F.C.: A computer program for calculating the activities of calcium and orthophosphate ions in biological fluids and related synthetic solutions. Calcif. Tiss. Res.8, 304–319 (1972).

    Google Scholar 

  35. Smith, Q.T., Lindenbaum, A.: Composition and calcium binding of proteinpolysaccharides of calf nasal septum and scapula. Calcif. Tiss. Res.7, 290–298 (1971).

    Google Scholar 

  36. Strates, B.A., Neuman, W.F., Levinskas, G.J.: The solubility of bone mineral II. Precipitation of near neutral solutions of calcium and phosphate. J. Phys. Chem.61, 279–282 (1957).

    Google Scholar 

  37. Termine, J.D., Posner, A.S.: Calcium phosphate formationin vitro. (I) Factors affecting initial phase separation. Arch. Biochem. Biophys.140, 307–317 (1970).

    PubMed  Google Scholar 

  38. Termine, J.D., Peckauskas, R.A., Posner, A.S.: Calcium phosphate formationin vitro. (II) Effect of environment on amorphous-crystalline transformation. Arch. Biochem. Biophys.140, 318–325 (1970).

    PubMed  Google Scholar 

  39. Urist, M.R., Speer, D.P., Ibsen, K.J., Strates, B.S.: Calcium binding by chondroitin sulfate. Calcif. Tiss. Res.2, 253–261 (1968).

    Google Scholar 

  40. Weinstein, H., Sachs, C.R., Schubert, M.: Proteinpolysaccharide in connective tissue; inhibition of phase separation. Science142, 1073–1075 (1963).

    PubMed  Google Scholar 

  41. Woessner, F.J., Jr.: Acid cathepsins of cartilage. In: Cartilage Degradation and repair (ed. by C.A.L. Bassett), p. 99–106. Washington, D. C.: National Academy of Sciences-National Research Council, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuervo, L.A., Pita, J.C. & Howell, D.S. Inhibition of calcium phosphate mineral growth by proteoglycan aggregate fractions in a synthetic lymph. Calc. Tis Res. 13, 1–10 (1973). https://doi.org/10.1007/BF02015390

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02015390

Key words

Navigation