Advertisement

Microbial Ecology

, Volume 19, Issue 1, pp 1–20 | Cite as

Catabolic plasmids of environmental and ecological significance

  • Gary S. Sayler
  • Scott W. Hooper
  • Alice C. Layton
  • J. M. Henry King
Mini Review

Abstract

The environmental and ecological significance of catabolic plasmids and their host strains are discussed in the context of their potential application for environmental biotechnology. Included is a comprehensive list of naturally occurring discrete catabolic plasmids isolated from either natural habitats or selective enrichment studies. General properties, such as plasmid maintenance, stability and transfer, are discussed together with the techniques for plasmid detection and monitoring in the environment. The issues concerning the construction of catabolic strains with new or broader substrate ranges and the uses of monocultures or consortia for in situ treatment are addressed.

Keywords

Potential Application Nature Conservation Natural Habitat General Property Comprehensive List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adriaens P, Kohler H-PE, Kohler-Staub D, Focht DD (1989) Bacterial dehalogenation of chlorobenzoates and co-culture biodegradation of 4,4′-dichlorobiphenyl. Appl Environ Microbiol 55:887–892PubMedGoogle Scholar
  2. 2.
    Amy PS, Hiatt HD (1989) Survival and detection of bacteria in an aquatic environment. Appl Environ Microbiol 55:788–793PubMedGoogle Scholar
  3. 3.
    Amy PS, Schulke JW, Frazier LM, Seidler RJ (1985) Characterization of aquatic bacteria and cloning of genes specifying partial degradation of 2,4-dichlorophenoxyacetic acid. Appl Environ Microbiol 49:1237–1245PubMedGoogle Scholar
  4. 4.
    Andreoni V, Bestetti A (1988) Ferulic acid degradation encoded by a catabolic plasmid. FEMS Microb Ecol 53:129–132Google Scholar
  5. 5.
    Anson JG, Mackinnon G (1984) NovelPseudomonas plasmid involved in aniline degradation. Appl Environ Microbiol 48:868–869Google Scholar
  6. 6.
    Barkay T, Fouts DL, Olson BH (1985) Preparation of a DNA gene probe for the detection of mercury resistance genes in gram-negative bacterial communities. Appl Environ Microbiol 49:686–692PubMedGoogle Scholar
  7. 7.
    Bentjen SA, Fredrickson JK, Van Vorris P, Li SW (1989) Intact soil-core microcosms for evaluating the fate and ecological impact of the release of genetically engineered microorganisms. Appl Environ Microbiol 55:198–202Google Scholar
  8. 8.
    Bestetti G, Galli E (1987) Characterization of a novel TOL-like plasmid fromPseudomonas putida involved in 1,2,4-trimethylbenzene degradation. J Bacteriol 169:1780–1783PubMedGoogle Scholar
  9. 9.
    Bestetti G, Galli E, Ruzzi M, Baldacci G, Zennaro E, Frontali L (1984) Molecular characterization of a plasmid fromPseudomonas fluorescens involved in styrene degradation. Plasmid 12:181–188PubMedGoogle Scholar
  10. 10.
    Blackburn JW, Jain RK, Sayler GS (1987) Molecular microbial ecology of a naphthalene-degrading genotype in activated sludge. Environ Sci Technol 21:884–890Google Scholar
  11. 11.
    Blake CK, Hegeman GD (1987) Plasmid pCBI carries genes for anaerobic benzoate catabolism inAlcaligenes xylosoxidans subsp.denitrificans PN-1. J Bacteriol 169:4878–4883PubMedGoogle Scholar
  12. 12.
    Bohlool BB, Schmidt EL (1980) The immunofluorescence approach in microbial ecology. Adv Microb Ecol 4:203–241Google Scholar
  13. 13.
    Boronin AM, Filonov AE, Balakshina VV, Kulakova AN (1985) Stability of naphthalene biodegradation plasmids NPL-1 and NPL-41 in populations ofPseudomonas putida under conditions of continuous culture. Mikrobiologiya 54:610–615Google Scholar
  14. 14.
    Boronin AM, Naumova RP, Grishchenkov UG, Ilijinskaya ON (1984) Plasmids specifying E-caprolactam degradation inPseudomonas. FEMS Microbiol Lett 22:167–170Google Scholar
  15. 15.
    Boronin AM, Kochetkov VV, Skryabin GK (1980) Incompatibility groups of naphthalene degradative plasmids inPseudomonas. FEMS Microbiol Lett 7:249–252Google Scholar
  16. 16.
    Boronin AM, Kochetkov VV, Starovoitov A, Skryabin A (1977) Plasmid pBS2 and pBS3, controlling the oxidation of naphthalene in bacteria of the genusPseudomonas. Dokl Akad Nauk SSSR 237:1205–1207PubMedGoogle Scholar
  17. 17.
    Bradley DE, Williams PA (1982) The TOL plasmid is naturally derepressed for transfer. J Gen Microbiol 128:3019–3024PubMedGoogle Scholar
  18. 18.
    Brandsch R, Hinkkanen AE, Decker K (1982) Plasmid mediated nicotine degradation inArthrobacter oxidans. Arch Microbiol 132:26–30Google Scholar
  19. 19.
    Burton NF, Day MJ, Bull AT (1982) Distribution of bacterial plasmids in clean and polluted sites in a South Wales river. Appl Environ Microbiol 44:1026–1029PubMedGoogle Scholar
  20. 20.
    Cain RB (1981) Microbial degradation of surfactants and “builder” components. In: Leisinger T, Hutter R, Cook AM, Nuesch J (eds) Microbial degradation of xenobiotic and recalcitrant compounds. Academic Press, New York, pp 326–370Google Scholar
  21. 21.
    Cane PA, Williams PA (1982) The plasmid coded metabolism of naphthalene and 2-methylnaphthalene inPseudomonas strains: Phenotypic changes correlated with structural modification of plasmid pWW60-1. J Gen Microbiol 128:2281–2290Google Scholar
  22. 22.
    Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71PubMedGoogle Scholar
  23. 23.
    Chakrabarty AM (1972) Genetic basis of the biodegradation of salicylate inPseudomonas. J Bacteriol 112:815–823PubMedGoogle Scholar
  24. 24.
    Chakrabarty AM, Chon G, Gunsalus IC (1973) Genetic regulation of octane dissimilation plasmid inPseudomonas. Proc Natl Acad Sci USA 70:1137–1140PubMedGoogle Scholar
  25. 25.
    Chatfield LK, Williams PA (1986) Naturally occurring TOL plasmids inPseudomonas strains carrying either two homologous or two nonhomologous catechol 2,3-oxygenase genes. J Bacteriol 168:878–885PubMedGoogle Scholar
  26. 26.
    Chatterjee DK, Chakrabarty AM (1983) Genetic homology between independently isolated chlorobenzene-degradative plasmids. J Bacteriol 153:532–534PubMedGoogle Scholar
  27. 27.
    Chatterjee DK, Kellogg ST, Hanada S, Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modifiedortho pathway. J Bacteriol 146:639–646PubMedGoogle Scholar
  28. 28.
    Chaudhry GR, Cortez L (1988) Degradation of bromacil by aPseudomonas sp. Appl Environ Microbiol 54:2203–2207PubMedGoogle Scholar
  29. 29.
    Chaudhry GR, Huang GH (1988) Isolation and characterization of a new plasmid from aFlavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J Bacteriol 170:3897–3902PubMedGoogle Scholar
  30. 30.
    Cook AM (1987) Biodegradation of s-triazine xenobiotics. FEMS Microbiol Rev 46:93–116Google Scholar
  31. 31.
    Conners MA, Barnsley EA (1982) Naphthalene plasmids inPseudomonads. J Bacteriol 149:1096–1101PubMedGoogle Scholar
  32. 32.
    Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated fromAlcaligenes paradoxus andAlcaligenes eutrophus. J Bacteriol 145:681–686PubMedGoogle Scholar
  33. 33.
    Duggleby CJ, Bayley SA, Worsey MJ, Williams PA, Broda P (1977) Molecular sizes and relationships of TOL plasmids inPseudomonas. J Bacteriol 130:1274–1280PubMedGoogle Scholar
  34. 34.
    Dunn NW, Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation inPseudomonas putida. J Bacteriol 114:974–979PubMedGoogle Scholar
  35. 35.
    Dunn NW, Dunn HM, Austen RA (1980) Evidence for the existence of two catabolic plasmids coding for the degradation of naphthalene. J Gen Microbiol 117:529–533Google Scholar
  36. 36.
    Ensley BD (1985) Stability of recombinant plasmids in industrial microorganisms. CRC Crit Rev Biotechnol 4:263–283Google Scholar
  37. 37.
    Farrell R, Chakrabarty AM (1979) Degradative plasmids: Molecular nature and mode of evolution. In: Timmis KN, Puhler A (eds) Plasmids of medical, environmental and commercial importance. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 97–109Google Scholar
  38. 38.
    Festl H, Ludwig W, Schleifer KH (1986) DNA hybridization probe for thePseudomonas fluorescens group. Appl Environ Microbiol 52:1190–1194PubMedGoogle Scholar
  39. 39.
    Fisher PR, Appleton J, Pemberton JM (1978) Isolation and characterization of the pesticide-degrading plasmid pJP1 fromAlcaligenes paradoxus. J Bacteriol 135:798–804PubMedGoogle Scholar
  40. 40.
    Frantz B, Chakrabarty AM (1986) Degradative plasmids inPseudomonas. In: Sokatch JR (ed) The bacteria. Vol. X. Academic Press, Orlando, FL, pp 295–323Google Scholar
  41. 41.
    Friello DA, Mylroie JR, Gibson DT, Rogers JE, Chakrabarty AM (1976) XYL, nonconjugative xylene-degradative plasmid inPseudomonas Pxy. J Bacteriol 127:1217–1224PubMedGoogle Scholar
  42. 42.
    Frederickson JK, Bezdicek DF, Brockman FE, Li SW (1988) Enumeration of Tn5 mutant bacteria in soil by most-probable-number-DNA hybridization using a procedure and antibiotic resistance. Appl Environ Microbiol 54:446–453PubMedGoogle Scholar
  43. 43.
    Fuhrman JA, Comeau DE, Hagstrom O, Chan AM (1988) Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl Environ Microbiol 54:1426–1429Google Scholar
  44. 44.
    Furukawa K, Chakrabarty AM (1982) Involvement of plasmids in total degradation of chlorinated biphenyls. Appl Environ Microbiol 44:619–626PubMedGoogle Scholar
  45. 45.
    Ghosal D, You I-S, Chatterjee DK, Chakrabarty AM (1985) Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Proc Natl Acad Sci USA 82:1638–1642PubMedGoogle Scholar
  46. 46.
    Ghosal D, You I-S, Chatterjee DK, Chakrabarty AM (1985) Microbial degradation of halogenated compounds. Science 228:135–142Google Scholar
  47. 47.
    Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252Google Scholar
  48. 48.
    Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group specific oligodeoxy nucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726PubMedGoogle Scholar
  49. 49.
    Golovleva LA, Pertsova RN, Boronin AM, Travkin VM, Kozlovsky SA (1988) Kelthane degradation by genetically engineeredPseudomonas aeruginosa BS827 in a soil ecosystem. Appl Environ Microbiol 54:1587–1590PubMedGoogle Scholar
  50. 50.
    Gueren WF, Jones GE (1988) Mineralization of phenanthrene by aMycobacterium sp. Appl Environ Microbiol 54:937–944PubMedGoogle Scholar
  51. 51.
    Gunsalus IC, Yen K-M (1981) Metabolic plasmid organization and distribution. In: Levy SB, Clowes RC, Koenig EL (eds) Molecular biology, pathogenicity and ecology of bacterial plasmids. Plenum Press, New York, pp 499–509Google Scholar
  52. 52.
    Hada HS, Sizemore RK (1981) Incidence of plasmids in marineVibrio spp. isolated from an oil field in the northwestern Gulf of Mexico. Appl Environ Microbiol 44:199–202Google Scholar
  53. 53.
    Hardman DJ, Gowland PC, Slater JH (1986) Large plasmids from soil bacteria enriched on halogenated alkanoic acids. Appl Environ Microbiol 51:41–51Google Scholar
  54. 54.
    Hartman J, Reineke W, Knackmuss H-J (1979) Metabolism of 3-chloro, 4-chloro, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol 37:421–428PubMedGoogle Scholar
  55. 55.
    Heinaru AL, Duggleby CJ, Broda P (1978) Molecular relationships of degradative plasmids determined byin situ hybridization of their endonuclease generated fragments. Mol Gen Genet 160:347–351PubMedGoogle Scholar
  56. 56.
    Herrmann H, Janke D, Krejsa S, Kunze I (1987) Involvement of the plasmid pPGH1 in the phenol degradation ofPseudomonas pulida strain H. FEMS Microbiol Letts 43:133–137Google Scholar
  57. 57.
    Hewetson L, Dunn HM, Dunn NW (1978) Evidence for a transmissible catabolic plasmidPseudomonas putida encoding the degradation of p-cresol via the protocatechuate ortho cleavage pathway. Genet Res Camb 32:249–255Google Scholar
  58. 58.
    Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711Google Scholar
  59. 59.
    Hopper DS, Kemp PD (1980) Regulation of enzymes of the 3,5-xylenol degradative pathway inPseudomonas putida. J Bacteriol 142:21–26PubMedGoogle Scholar
  60. 60.
    Hughes EJL, Bayly RC, Skurray RA (1984) Characterization of a TOL-like plasmid fromAlcaligenes eutrophus that controls expression of a chromosomally encoded p-cresol pathway. J Bacteriol 158:73–78PubMedGoogle Scholar
  61. 61.
    Jacoby GA (1986) Resistance plasmids ofPseudomonas. In: Sokatch JR (ed) The bacteria. Vol. X. Academic Press, Orlando, FL, pp 265–293Google Scholar
  62. 62.
    Jain RK, Sayler GS, Wilson JT, Houston L, Pacia D (1987) Maintenance and stability of introduced genotypes in ground water aquifer material. Appl Environ Microbiol 53:996–1002PubMedGoogle Scholar
  63. 63.
    Jain RK, Burlage RS, Sayler GS (1988) Methods for detecting recombinant DNA in the environment. CRC Crit Rev Biotechnol 8:33–84Google Scholar
  64. 64.
    Kamp PF, Chakrabarty AM (1979) Plasmids specifying p-chlorobiphenyl degradation in enteric bacteria. In: Timmis KN, Puhler A (eds) Plasmids of medical, environmental, and commercial importance. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 275–285Google Scholar
  65. 65.
    Karns JS, Kilbane JJ, Duttagupta S, Chakrabarty AM (1983) Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degradingPseudomonas cepacia. Appl Environ Microbiol 46:1176–1181PubMedGoogle Scholar
  66. 66.
    Karns JS, Kilbane JJ, Chatterjee DK, Chakrabarty AM (1984) Microbial biodegradation of 2,4,5-trichlorophenoxyacetic acid and chlorophenols. In: Omenn GS, Hollaender A (eds) Genetic control of environmental pollutants. Plenum Press, New York, pp 3–21Google Scholar
  67. 67.
    Kawasaki H, Yahara H, Tonomura K (1981) Isolation and characterization of plasmid pUO1 mediating dehalogenation of haloacetate and mercury resistance inMoraxella sp. B. Agric Biol Chem 45:1477–1481Google Scholar
  68. 68.
    Keil H, Lebens MR, Williams PA (1985) TOL plasmid pWW15 contains two nonhomologous, independently regulated catechol 2,3-oxygenase genes. J Bacteriol 163:248–255PubMedGoogle Scholar
  69. 69.
    Keil H, Keil S, Pickup RW, Williams PA (1985) Evolutionary conservation of genes coding formeta pathway enzymes with TOL plasmids pWW0 and pWW53. J Bacteriol 164:887–895PubMedGoogle Scholar
  70. 70.
    Kellogg ST, Chatterjee DK, Chakrabarty AM (1981) Plasmid-assisted molecular breeding: New technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135PubMedGoogle Scholar
  71. 71.
    Keshacvarz T, Lilly MD, Clarke PH (1985) Stability of a catabolic plasmid in continuous culture. J Gen Microbiol 131:1193–1203Google Scholar
  72. 72.
    Kilbane JJ, Chatterjee DK, Karns JS, Kellogg ST, Chakrabarty AM (1982) Biodegradation of 2,4,5-trichloroacetic acid by a pure culture ofPseudomonas cepacia. Appl Environ Microbiol 44:72–78PubMedGoogle Scholar
  73. 73.
    Kiyohara H, Sugyana M, Mondello FJ, Gibson DT, Yano K (1983) Plasmid involvement in the degradation of polycyclic aromatic hydrocarbons by aBeijerinckia sp. Biochem Biophys Res Commun 111:939–945PubMedGoogle Scholar
  74. 74.
    Kochetkov VV, Boronin AM (1984) Comparative study of plasmids controlling the biodegradation of naphthalene by a culture ofPseudomonas. Mikrobiologiya 53:639–644Google Scholar
  75. 75.
    Kochetkov VV, Stasovoitov II, Boronin AM, Skryabin GK (1982)Pseudomonas putida plasmid pBS241: Plasmid mediated biphenyl degradation. Dokl Akad Nauk SSSR 226:241–243Google Scholar
  76. 76.
    Kolenc RJ, Inniss WE, Glick BR, Robinson CW, Mayfield CI (1988) Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl Environ Microbiol 54:638–641PubMedGoogle Scholar
  77. 77.
    Krockel L, Focht DD (1987) Construction of chlorobenzene-utilizing recombinants by progenitive manifestation of a rare event. Appl Environ Microbiol 53:2470–2475PubMedGoogle Scholar
  78. 78.
    Kunz DA, Chapman PJ (1981) Isolation and characterization of spontaneously occurring TOL plasmid mutants ofPseudomonas putida HSI. J Bacteriol 146:952–964PubMedGoogle Scholar
  79. 79.
    Lehrbach PR, Zeyer J, Reineke W, Knackmuss H-J, Timmis KN (1984) Enzyme recruitmentin vitro: Use of cloned genes to extend the range of haloaromatics degraded byPseudomonas sp. strain B13. J Bacteriol 158:1025–1032PubMedGoogle Scholar
  80. 80.
    Levin BR (1986) The maintenance of plasmids and transposons in natural populations of bacteria. In: Levy SB, Norvick RP (eds) Antibiotic resistance genes: Ecology, transfer and expression. Branbury Report 24. Cold Spring Harbor Laboratory, New York, pp 57–70Google Scholar
  81. 81.
    Levy SB (1986) Ecology of antibiotic resistance determinants. In: Levy SB, Norvick RP (eds) Antibiotic resistance genes: Ecology, transfer, and expression. Branbury Report 24. Cold Spring Harbor Laboratory, New York, pp 17–30Google Scholar
  82. 82.
    Levy SB, Miller RV (1989) Gene transfer in the environment. McGraw-Hill Inc, New YorkGoogle Scholar
  83. 83.
    Monticello DJ, Bakker D, Finnerty WR (1985) Plasmid-mediated degradation of dibenzothiophene byPseudomonas species. Appl Environ Microbiol 49:756–760PubMedGoogle Scholar
  84. 84.
    Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene fromFlavobacterium sp. by Southern hybridization withopd fromPseudomonas diminuta. Appl Environ Microbiol 51:926–930PubMedGoogle Scholar
  85. 85.
    Mulbry WW, Kearney PC, Nelson JO, Karns JS (1987) Physical comparison of parathion hydrolase plasmids fromPseudomonas diminuta andFlavobacterium sp. Plasmid 18:173–177PubMedGoogle Scholar
  86. 86.
    Negoro S, Okada H (1982) Physical map of nylon oligomer degradative plasmid pOAD2 harbored inFlavobacterium sp. K172. Agric Biol Chem 46:745–750Google Scholar
  87. 87.
    Negoro S, Shinagawa H, Nakata A, Kinoshita S, Hatozaki T, Okada H (1980) Plasmid control of 6-aminohexanoic acid cyclic dimer degradation enzymes ofFlavobacterium sp. KI72. J Bacteriol 143:238–245PubMedGoogle Scholar
  88. 88.
    Negoro S, Taniguchi T, Kanaoka M, Kimura H, Okada H (1983) Plasmid determined enzymic degradation of nylon oligomers. J Bacteriol 155:22–31PubMedGoogle Scholar
  89. 89.
    Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66Google Scholar
  90. 90.
    Ogunseitan OA, Tedford ET, Pacia D, Sirotkin KM, Sayler GS (1987) Distribution of plasmids in groundwater bacteria. J Ind Microbiol 1:311–317Google Scholar
  91. 91.
    Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR (1986) Microbial ecology and evolution: A ribosomal RNA approach. Ann Rev Microbiol 40:337–365CrossRefGoogle Scholar
  92. 92.
    Palleroni NJ (1986) Taxonomy of the pseudomonads. In: Sokatch JR (ed) The bacteria. Vol X. Academic Press, Orlando, FL, pp 3–26Google Scholar
  93. 93.
    Painceria MT, Alonso JC, Saracher AN, Grau O (1985) A 38 Md plasmid associated with naphthalene utilization inPseudomonas. Microbios Lett 28:41–46Google Scholar
  94. 94.
    Pemberton JM, Corney B, Don RH (1979) Evolution and spread of pesticide degrading ability among soil micro-organisms. In: Timmis KN, Puhler A (eds) Plasmids of medical, environmental, and commercial importance. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 287–299Google Scholar
  95. 95.
    Perkins EJ, Lurquin PF (1988) Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene inAlcaligenes eutrophus JMP134 (pJP4). J Bacteriol 170:5669–5672PubMedGoogle Scholar
  96. 96.
    Pettigrew CA, Sayler GS (1986) The use of DNA: DNA colony hybridization in the rapid isolation of 4-chlorobiphenyl degradative phenotypes. J Microbiol Methods 5:205–213Google Scholar
  97. 97.
    Pickup RW, Williams PA (1982) Spontaneous deletions in the TOL plasmid pWW20 which give rise to the B3 regulatory mutants ofPseudomonas putida MT20. J Gen Microbiol 128:1385–1390PubMedGoogle Scholar
  98. 98.
    Pickup RW, Lewis RJ, Williams PA (1983)Pseudomonas sp. MT14, a soil isolate which contains two large catabolic plasmids, one a TOL plasmid and one coding for phenylacetate catabolism and mercury resistance. J Gen Microbiol 129:153–158Google Scholar
  99. 99.
    Ramos JL, Waserfallen A, Rose K, Timmis KN (1987) Redesigning metabolic routes: Manipulation of the TOL plasmid pathway for catabolism of alkylbenzoates. Science 235:593–596PubMedGoogle Scholar
  100. 100.
    Reanney DC, Roberts WP, Kelly WJ (1982) Genetic interactions among microbial communities. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Vol. 1. Academic Press, London, pp 287–322Google Scholar
  101. 101.
    Reineke W, Knackmuss H-J (1979) Construction of haloaromatics utilising bacteria. Nature (Lond) 277:385–386Google Scholar
  102. 102.
    Reineke W, Knackmuss H-J (1980) Hybrid pathway for chlorobenzoate metabolism inPseudomonas sp. B13 derivatives. J Bacteriol 142:467–473PubMedGoogle Scholar
  103. 103.
    Reineke W, Knackmuss H-J (1984) Microbial metabolism of haloaromatics: Isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47:395–402PubMedGoogle Scholar
  104. 104.
    Rheinwald JG, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid controlling camphor oxidation inPseudomonas putida. Proc Natl Acad Sci USA 70:885–889PubMedGoogle Scholar
  105. 105.
    Rojo F, Pieper DH, Engesser K-H, Knackmuss H-J, Timmis KN (1987) Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398PubMedGoogle Scholar
  106. 106.
    Saye DJ, Ogunseitan O, Sayler GS, Miller RV (1987) Potential for transduction of plasmids in a natural freshwater environment: Effect of plasmid donor concentration and a natural microbial community on transduction inPseudomonas aeruginosa. Appl Environ Microbiol 53:987–995PubMedGoogle Scholar
  107. 107.
    Sayler GS, Stacey G (1986) Methods for evaluation of microorganism properties. In: Fisksel J, Covello VT (eds) Biotechnology risk assessment: Issues and methods for environmental introductions. Pergamon Press, New York, pp 35–55Google Scholar
  108. 108.
    Sayler GS, Shields MS, Tedford ET, Breen A, Hooper SW, Sirotkin KM, Davis JW (1985) Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Appl Environ Microbiol 49:1295–1302PubMedGoogle Scholar
  109. 109.
    Schmidt E, Hellwig M, Knackmuss H-J (1983) Degradation of chlorophenols by a defined mixed microbial community. Appl Environ Microbiol 46:1038–1044PubMedGoogle Scholar
  110. 110.
    Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis byPseudomonas diminuta. Appl Environ Microbiol 44:246–249Google Scholar
  111. 111.
    Shields MS, Hooper SW, Sayler GS (1985) Plasmid mediated mineralization of 4-chlorobiphenyl. J Bacteriol 163:882–889PubMedGoogle Scholar
  112. 112.
    Slater JH, Lovatt D (1984) Biodegradation and the significance of microbial communities. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 439–485Google Scholar
  113. 113.
    Sinclair MI, Maxwell PC, Lyon BR, Holloway BW (1986) Chromosomal location of TOL plasmid DNA inPseudomonas putida. J Bacteriol 168:1302–1308PubMedGoogle Scholar
  114. 114.
    Singer JT, Finnerty WR (1984) Genetics of hydrocarbon-utilizing microorganisms. In: Atlas RM (ed) Petroleum microbiology. MacMillan, New York, pp 299–354Google Scholar
  115. 115.
    Somerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55:548–554PubMedGoogle Scholar
  116. 116.
    Skryabin GK, Kochetkov VV, Eremin AA, Perebityuk AN, Starovoitov II, Boronin AM (1980) New naphthalene-biodegrading plasmid pBS4. Dokl Akad Nauk SSSR 250:202–215Google Scholar
  117. 117.
    Stalker DM, McBride KE (1987) Cloning and expression inEscherichia coli of aKlebsiella ozaenae plasmid-borne gene encoding a nitrilase specific for the herbicide Bromoxynil. J Bacteriol 169:955–960PubMedGoogle Scholar
  118. 118.
    Steffan RJ, Atlas RM (1988) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol 54:2185–2191PubMedGoogle Scholar
  119. 119.
    Steffan RJ, Goksyr J, Bej AK, Atlas RM (1988) Recovery of DNA from soils and sediments. Appl Environ Microbiol 54:2908–2915PubMedGoogle Scholar
  120. 120.
    Tam AC, Behki RM, Khan SU (1987) Isolation and characterization of an S-ethyl-N, N-dipropylthiocarbamate-degradingArthrobacter strain and evidence for plasmid-associatedS-ethyl-N, N-dipropylthiocarbamate. Appl Environ Microbiol 53:1088–1093PubMedGoogle Scholar
  121. 121.
    Thacker R, Rorvig O, Kahlon P, Gunsalus IC (1978) NIC, conjugative nicotine-nicotinate degradative plasmid inPseudomonas convexa. J Bacteriol 135:289–290PubMedGoogle Scholar
  122. 122.
    Thacker R, Gunsalus IC (1979) Dissociation of the NIC plasmid aggregate inPseudomonas putida. J Bacteriol 137:697–699PubMedGoogle Scholar
  123. 123.
    Thomas CM, Smith CA (1987) Incompatibility group P plasmids: Genetics, evolution, and use in genetic manipulation. Ann Rev Microbiol 41:77–101Google Scholar
  124. 124.
    Timmis KN, Lehrbach PR, Harayama S, Don RH, Mermond N, Bas J, Leppik R, Weightman AJ, Reineke W, Knackmuss H-J (1985) Analysis and manipulation of plasmid-encoded pathways for the catabolism of aromatic compounds by soil bacteria. In: Helinski DR, Cohen SN, Clewell DB, Jackson DA, Hollaender A (eds) Plasmids in bacteria. Plenum Press, New York, pp 719–739Google Scholar
  125. 125.
    Trevors JT, Barkay T, Bourquin AW (1987) Gene transfer among bacteria in soil and aquatic environments: A review. Can J Microbiol 33:191–198Google Scholar
  126. 126.
    Tsuda M, Lino T (1987) Genetic analysis of a transposon carrying toluene degrading genes on a TOL plasmid pWW0. Mol Gen Genet 210:270–276PubMedGoogle Scholar
  127. 127.
    Vandenbergh PA, Wright AM (1983) Plasmid involvement in acyclic isoprenoid metabolism byPseudomonas putida. Appl Environ Microbiol 45:1953–1955Google Scholar
  128. 128.
    Vandenbergh PA, Olsen RH, Colaruotolo JF (1981) Isolation and genetic characterization of bacteria that degrade chloroaromatic compounds. Appl Environ Microbiol 42:737–739Google Scholar
  129. 129.
    Vega D, Cooke R, Marty JL (1988) Relationship between phenylcarbamate degradation and plasmids in two strains ofPseudomonas. FEMS Microbiol Lett 49:199–202Google Scholar
  130. 130.
    Weinberger M, Kolenbander PE (1979) Plasmid determined 2-hydroxypyridine utilization byArthrobacter crystallopoietes. Can J Microbiol 25:329–334PubMedGoogle Scholar
  131. 131.
    White DC (1988) Validation of quantitative analysis for microbial biomass, community structure and metabolic activity. Arch Hydrobiol Beih 31:1–18Google Scholar
  132. 132.
    White GP, Dunn NW (1978) Compatibility and sex specific phage plating characteristics of the TOL and NAH catabolic plasmids. Genet Res 32:207–213PubMedGoogle Scholar
  133. 133.
    Wiggins BA, Jones SH, Alexander M (1987) Explanation for the acclimation period preceding the mineralization of organic chemical in aquatic environments. Appl Environ Microbiol 53:791–796PubMedGoogle Scholar
  134. 134.
    Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates byPseudomonas putida (arvilla) mt-2: Evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423PubMedGoogle Scholar
  135. 135.
    Williams PA, Worsey MJ (1976) Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: Evidence for the existence of new TOL plasmids. J Bacteriol 125:818–828PubMedGoogle Scholar
  136. 136.
    Winter RB, Yen K-M, Ensley BD (1989) Efficient degradation of trichloroethylene by a recombinantEscherichia coli. Bio/Technology 7:282–285Google Scholar
  137. 137.
    Wyndham RC, Strauss NA (1988) Chlorobenzoate catabolism and interaction betweenAl-caligenes andPseudomonas species from Bloody Run Creek. Arch Microbiol 150:230–236PubMedGoogle Scholar
  138. 138.
    Wyndham RC, Singh RK, Strauss NA (1988) Catabolic instability, plasmid gene deletion and recombination inAlcaligenes sp. BR60. Arch Microbiol 150:237–243PubMedGoogle Scholar
  139. 139.
    Yano K, Nishi T (1980) pKJ1, a naturally occurring conjugative plasmid coding for toluene degradation and resistance to streptomycin and sulfonamides. J Bacteriol 143:552–560PubMedGoogle Scholar
  140. 140.
    Yates JR, Lobos JH, Holmes DS (1986) The use of genetic probes to detect microorganisms in biomining operations. J Ind Microbiol 1:129–135Google Scholar
  141. 141.
    Yen K-M, Serdar CM (1988) Genetics of naphthalene catabolism inPseudomonas. CRC Crit Rev Microbiol 15:247–267Google Scholar
  142. 142.
    Zuniga MC, Durham DR, Welch RA (1981) Plasmid and chromosome mediated dissimilation of naphthalene and salicylate inPseudomonas putida pMWD-1. J Bacteriol 147:836–843PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Gary S. Sayler
    • 1
  • Scott W. Hooper
    • 1
  • Alice C. Layton
    • 1
  • J. M. Henry King
    • 1
  1. 1.Department of Microbiology, Graduate Program in Ecology, and Center for Environmental BiotechnologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations