Agents and Actions

, Volume 42, Issue 1–2, pp 74–80 | Cite as

Inhibition of relaxin-induced pubic symphyseal “relaxation” in guinea pigs by glycosaminoglycan polysulfates and pentosan polysulfate

  • Bernard G. Steinetz
  • George Lust
Bone and Cartilage


There are similarities between the actions of estrogen and relaxin on the connective tissues of the pubic symphysis and those of neutral proteases on cartilage in osteoarthritis, including cartilage hydration, proteoglycan loss, and dissolution of collagen fibers.

We hypothesized that compounds known to inhibit cartilage breakdown in animal models of osteoarthritis, such as polysulfated GAGs, would also antagonize the actions of estrogen and relaxin that increase the laxity and mobility of the pubic symphyses of guinea pigs.

Estrogen-primed guinea pigs were injected with relaxin or with relaxin and the test compound. The pubic symphyses were manually palpated 6 h later and the degree of mobility scored. Glycosaminoglycan polysulfates and pentosan polysulfate inhibited relaxin-induced pubic symphyseal relaxation, whereas other types of agents were without effect.

The guinea pig pubic symphysis assay for relaxin may thus provide a novel rapid screening test for compounds with potential chondroprotective activity.

Key words

Chondroprotective drugs Proteoglycanase inhibitors Osteoarthritis model Cartilage breakdown Relaxin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. C. Miller and C. A. Dinarello,Biologic activities of interleukin-1 relevant to rheumatic diseases. Pathol. Immunopathol. Res.6, 22–36 (1987).Google Scholar
  2. [2]
    H. B. Fell and R. W. Jubb,The effect of synovial tissue on the breakdown of articular cartilage in organ cultures. Arth. Rheum.20, 1359–1371 (1977).Google Scholar
  3. [3]
    K. Desmukh-Phadke, M. Lawrence and S. Nanda,Synthesis of collagenase and neutral proteases by articular chondrocytes: Stimulation by a macrophage-derived factor. Biochem. Biophys. Res. Commun.85, 490–496 (1978).PubMedGoogle Scholar
  4. [4]
    T. Krakauer, J. J. Oppenheim and H. E. Jasin,Human interleukin-1 mediates cartilage matrix degradation. Cell Immunol.91, 92–99 (1985).Google Scholar
  5. [5]
    J. Saklatvala, S. J. Sarsfield and L. M. C. Pilsworth,Characterization of proteins from human synovium and mononuclear leukocytes that induce resorption of cartilage proteoglycan in vitro. Biochem. J.209, 337–344 (1983).Google Scholar
  6. [6]
    E. M. O'Byrne, H. C. Schroder, C. Stefano and R. L. Goldberg,Catabolin/interleukin-1 regulation of cartilage and chondrocyte metabolism. Agents and Actions21, 341–344 (1987).Google Scholar
  7. [7]
    J. T. Dingle, D. P. Page Thomas, B. King and D. R. Bard,In vivo studies of articular cartilage damage mediated by catabolin/interleukin-1. Ann. Rheum. Dis.46, 527–533 (1987).PubMedGoogle Scholar
  8. [8]
    E. C. Arner, T. M. DiMeo, D. M. Ruhl and M. A. Pratta,In vivo studies on the effects of human recombinant interleukin-1β on articular cartilage. Agents and Actions27, 254–257 (1989).PubMedGoogle Scholar
  9. [9]
    E. M. O'Byrne, V. Blancuzzi, D. E. Wilson, M. Wong and A. Y. Jeng,Blevated substance P and accelerated cartilage degradation in rabbit knees injected with interleukin-1 and tumor necrosis factor. Arth. Rheum.33, 1023–1028 (1990).Google Scholar
  10. [10]
    A. A. J. van de Loo and W. B. van den Berg,Effects of murine recombinant interleukin-1 on synovial joints in mice: Measurement of patellar cartilage metabolism and joint inflammation. Ann. Rheum. Dis.49, 238–245 (1990).PubMedGoogle Scholar
  11. [11]
    J. Steinberg, S. Tsukamoto and C. B. Sledge,A tissue culture model of cartilage breakdown in rheumatoid arthritis. III. Effects of antirheumatic drugs. Arth. Rheum.22, 877–885 (1979).Google Scholar
  12. [12]
    B. G. Steinetz, D. C. Swartzendruber, C. Colombo, M. Butler, E. O'Byrne, N. Wuerster and G. Lust,New parameters for evaluation of disease severity in a rabbit model of osteoarthritis. InAdvances in Inflammation Research. Vol. 11. (Ed. I. Otterness et al.) pp. 251–259, Raven Press, New York 1986.Google Scholar
  13. [13]
    C. P. Sabiston and M. E. Adams,Production of catabolin by synovium from an experimental model of osteoarthritis. J. Orthop. Res.7, 519–529 (1989).PubMedGoogle Scholar
  14. [14]
    B. G. Steinetz, E. M. O'Byrne, M. C. Butler and L. B. Hickman,Hormonal regulation of the connective tissue of the symphysis pubis. InBiology of Relaxin and its Role in the Human. (Eds. M. Bigazzi, F. C. Greenwood and F. Gasparri) pp. 71–92, Excerpta Medica, Amsterdam, Oxford and Princeton 1983.Google Scholar
  15. [15]
    L. Wahl, R. Blandau and R. Page,Effect of hormones on collagen metabolism and collagenase activity in the public symphysis ligament of the guinea pig. Endocrinology100, 571–579 (1977).PubMedGoogle Scholar
  16. [16]
    H. J. Chihal and L. L. Espey,Utilization of the relaxed symphysis pubis of guinea pigs for clues to the mechanism of ovulation. Endocrinology93, 1441–1445 (1973).PubMedGoogle Scholar
  17. [17]
    B. G. Steinetz, R. L. Kroc and V. L. Beach,Bioassay of relaxin. InMethods in Hormone Research. (Ed. R. I. Dorfman) pp. 481–513 (1969).Google Scholar
  18. [18]
    E. M. O'Byrne and B. G. Steinetz,Radioimmunoassay (RIA) of relaxin in various species using an antiserum to porcine relaxin. Proc. Soc. Exp. Biol. Med.152, 272–276 (1976).PubMedGoogle Scholar
  19. [19]
    P. Whiteman,The quantitative measurement of alcian blue-glycosaminoglycan complexes. Biochem. J.131, 343–350 (1973).PubMedGoogle Scholar
  20. [20]
    F. Kawamura,Effect of glycosaminoglycan-polysulfate on cartilage proteoglycans of experimentally produced osteoarthritis in rabbit knee joints. Nihon Univ. J. Med.23, 129–144 (1981).Google Scholar
  21. [21]
    J. C. Golding and P. Ghosh,Drugs for osteoarthritis I: The effects of pentosan polysulfate (SP54) on the degradation and loss of proteoglycans from articular cartilage in a model of osteoarthrosis induced in the rabbit knee by immobilization. Current Therap. Res.33, 173–184 (1983).Google Scholar
  22. [22]
    H. Vanharanta,Glycosaminoglycan polysulfate treatment in experimental osteoarthritis in rabbits. Scand. J. Rheumatol.12, 225–230 (1983).PubMedGoogle Scholar
  23. [23]
    D. Howell, O. E. Muniz and M. R. Carreno,Effect of glycosaminoglycan polysulfate ester on proteoglycan-degrading enzyme activity in an animal model of osteoarthritis. InAdvances in Inflammation Research. Vol. 11. (Eds. I. Otterness et al.) pp. 197–205, Raven-Press, New York 1986.Google Scholar
  24. [24]
    G. Lust, A. J. Williams, N. Burton-Wurster, K. A. Beck and G. Rubin,Effect of intramuscular injections of glycosaminoglycan polysulfates on signs of incipient hip dysplasia in growing dogs. Am. J. Vet. Res.53, 1836–1843 (1992).PubMedGoogle Scholar
  25. [25]
    R. W. Moskowitz, J. H. Reese, R. G. Young, D. Fein-Krantz, C. Malemud and A. I. Caplan,The effects of Rumalon, a glycosaminoglycan peptide complex, in a partial meniscectomy model of osteoarthritis in rabbits. J. Rheumatol.18, 205–209 (1991).PubMedGoogle Scholar
  26. [26]
    G. S. Gates, J. J. Flynn, R. J. Ryan and O. D. Sherwood,In vivo uptake of 125 I-relaxin in the guinea pig. Biol. Reprod.25, 549–554 (1981).PubMedGoogle Scholar
  27. [27]
    L. P. Yu, Jr., G. N. Smith, K. D. Brandt, S. L. Myers, B. L. O'Connor and D. A. Brandt,Reduction of the severity of canine osteoarthritis by prophylactic treatment with oral doxycycline. Arth. Rheum.35, 1150–1159 (1992).Google Scholar
  28. [28]
    M. Lingetti, P. L. D'Ambrosio, F. DiGrezia, P. Sorrentino and E. Lingetti,A controlled study in the treatment of osteoarthritis with diacetylrhein (Artrodar) Curr. Therap. Res.31, 408–412 (1982).Google Scholar
  29. [29]
    C. Arsenis, R. A. Greenwald, A. Moak and R. S. Laskin,Inhibition of neutral metalloproteinase activities (MTP) in epiphyseal and articular cartilage by tetracyclines (TETS) both in vivo and in vitro. Trans. Orthop. Res. Soc.15, 268 (1990).Google Scholar
  30. [30]
    M. Mian, D. Benetti, S. Rosini and R. Fantozzi,Rhein reduces proteoglycan loss during the autolytic breakdown of cultured cartilage. Int. J. Tiss. Reac.XI, 117–122 (1989).Google Scholar
  31. [31]
    J. Martel-Pelletier, J.-P. Pelletier and C. J. Malamud,Activation of neutral metalloprotease in human osteoarthritic knee cartilage: Evidence for degradation in the core protein of sulphated proteoglycan. Ann. Rheum. Dis.47, 801–808 (1988).PubMedGoogle Scholar
  32. [32]
    D. J. Buttle, C. J. Handley, M. Z. Ilic, J. Saklatvala, M. Murata and A. J. Barrett,Inhibition of cartilage proteoglycan release by a specific inactivator of cathepsin B and an inhibitor of matrix metalloproteinases. Evidence for two converging pathways of chondrocyte-mediated proteoglycan degradation. Arth. Rheum.36, 1709–1717 (1993).Google Scholar
  33. [33]
    H. Mori, M. Nakagawa, N. Itoh, K., Wada and T. Tamaya,Danazol suppresses the production of interleukin-1β and tumor necrosis factor by human monocytes. Am. J. Reprod. Immunol.24, 45–50 (1990).PubMedGoogle Scholar
  34. [34]
    B. A. Robertson, L. C. Gahrinh and R. A. Daynes,Neuropeptide regulation of interleukin-1 activities: Capacity of α-melanocyte stimulating hormone to inhibit interleukin-1-inducible responses in vivo and in vitro exhibits target cell selectivity. Inflammation10, 371–385 (1986).PubMedGoogle Scholar
  35. [35]
    J. M. Lipton, A. Macaluso, M. E. Hiltz and A. Catania,Central andministration of the peptide a-MSH inhibits inflammation in the skin. Peptides12, 795–798 (1991).PubMedGoogle Scholar
  36. [36]
    T. A. Bird and J. Saklatvala,Identification of a common class of high affinity receptors for both types of porcine interleukin-1 on connective tissue cells. Nature324, 263–266 (1986).PubMedGoogle Scholar
  37. [37]
    J. Panagides, M. J. Landes and A. E. Sloboda,Destruction of articular cartilage by arthritic synovium in vitro: Mechanism of breakdown and effect of indomethacin and prednisolone. Agents and Actions10, 22–30 (1980).PubMedGoogle Scholar
  38. [38]
    C. Colombo, M. Butler, L. Hickman, M. Selwyn, J. Chart and B. Steinetz,A new model of osteoarthritis in rabbits: II. Evaluation of antiosteoarthritic effects of selected antirheumatic drugs administered systemically. Arth. Rheum.26, 1132–1139 (1983).Google Scholar
  39. [39]
    J. Martel-Pelletier, J.-M. Cloutier and J.-P. Pelletier,In vivo effects of antirheumatic drugs on neutral collagenolytic proteases in human rheumatoid arthritis cartilage and synovium. J. Rheumatol.15, 1198–1204 (1988).PubMedGoogle Scholar
  40. [40]
    A. Weiss, E. Livne and M. Silbermann,Glucocorticoid hormone adversely affects the growth and regeneration of cartilage in vitro. Growth Develop. Aging52, 67–75 (1988).Google Scholar
  41. [41]
    S. L. Myers, K. D. Brandt and B. L. O'Connor,Low dose prednisone treatment does not reduce the severity of osteoarthritis in dogs after anterior cruciate ligament transection. J. Rheumatol.18, 1856–1862 (1991).PubMedGoogle Scholar
  42. [42]
    B. G. Steinetz, V. L. Beach and R. L. Kroc,The physiology of relaxin in laboratory animals. InRecent Progress in the Endocrinology of Reproduction. (Ed. C. H. Lloyd) pp. 389–423, Academic Press, New York and London 1959.Google Scholar
  43. [43]
    J.-P. Pelletier, J.-M. Cloutier and J. Martel-Pelletier,In vitro effects of tiaprofenic acid, sodium salicylate and hydrocortisone on the proteoglycan metabolism of human osteoarthritic cartilage. J. Rheumatol.16, 646–655 (1989).PubMedGoogle Scholar
  44. [44]
    T. Cawston,Blocking cartilage destruction with metalloproteinase inhibitors: A valid therapeutic target? Ann. Rheum. Dis.52, 769–770 (1993).PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • Bernard G. Steinetz
    • 1
  • George Lust
    • 2
  1. 1.New York University Medical Center Laboratory for Experimental Medicine and Surgery in Primates (LEMSIP)TuxedoUSA
  2. 2.James A. Baker Institute for Animal Health, College of Veterinary MedicineCornell UniversityIthacaUSA

Personalised recommendations