Agents and Actions

, Volume 42, Issue 1–2, pp 7–12 | Cite as

Fasting or dexamethasone treatment reduce protease content in rat lung mast cells and modulation of histamine synthesis by H3 receptors

  • A. Rouleau
  • M. Dam Trung Tuong
  • G. F. J. Newlands
  • H. R. P. Miller
  • J. -C. Schwartz
  • M. Garbarg
Allergy and Histamine

Abstract

The sensitivity of mast cells to H3-receptor modulation was studied in rat lung under various hormonal conditions. The heterogeneity of mast cell subpopulations in rat lung was assessed by the tissue content of rat mast cell protease I (RMCP I) and rat mast cell protease II (RMCP II). After 24 h fasting, concentrations of RMCP I were unchanged whereas the concentration of RMCP II was significantly reduced by 49%. The [3H]histamine (HA) synthesis was concomitantly decreased by 35%. In addition, the modulation of [3H]HA, synthesis by the H3 receptor agonist, (R)α-methylHA and by the antagonist, thioperamide, observed in control rats, was lost in fasted rats. Single and repeated, administrations of dexamethasone did not influence RMCPI concentrations, but decreased the concentrations of RMCP II with a parallel decrease in [3H]HA synthesis. The inhibitory effect of (R)α-methylHA on [3H]HA synthesis was also reduced.

These results suggest that a subpopulation of RMCP II-containing mast cells, very sensitive to environmental factors, could be the mast cells synthesizing HA in an H3-receptor-dependant manner.

Key words

Rat mast cell proteases Histamine presynaptic receptor Dexamethasone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. M. Arrang, M. Garbarg, J. C. Lancelot, J. M. Lecomte, H. Pollard, M. Robba, W. Schunack and J.-C. Schwartz,Highly potent and selective ligands, for histamine H 3-receptors. Nature327, 117–123 (1987).PubMedGoogle Scholar
  2. [2]
    M. Garbarg, M. D. Trung Tuong, C. Gros andJ.-C. Schwartz,Effects of histamine H 3-receptor ligands, on various biochemical indices of histaminergic neuron activity in rat brain. Eur. J. Pharmacol.164, 1–11 (1989).PubMedGoogle Scholar
  3. [3]
    P. J. Barnes,Histamine receptors in the respiratory tract. In:The Histamine Receptor. Vol. 16 (Eds. J.-C. Schwartz and H. L. Haas) pp. 253–270. Wiley Liss Inc, New York, 1992.Google Scholar
  4. [4]
    G. Bertaccini and G. Coruzzi,Histamine receptors in the digestive system. In:The Histamine Receptor. Vol. 16 (Eds. J.-C. Schwartz and H.L. Haas) pp. 193–230, Wiley Liss Inc., New York 1992.Google Scholar
  5. [5]
    J.-C. Schwartz, J. M. Arrang, M. Garbarg, J. Moreau and H. Pollard,A third histamine receptor subtype: Pharmacology and functions. In:Mast Cell and Basophil Differentiation, and Function in Health and Disease. (Eds. S. J. Galli and K. F. Austen) pp. 285–294, Raven Press Ltd., New York 1989.Google Scholar
  6. [6]
    M. Ichinose, C. D. Stretton, J.-C. Schwartz and P. J. Barnes,Histamine H 3-receptors inhibit cholinergic neurotransmission in guinea pig airways. Br. J. Pharmacol.97, 13–15 (1989).PubMedGoogle Scholar
  7. [7]
    M. Ichinose and P. J. Barnes,Inhibitor histamine H 3 receptors on cholinergic nerves in human airways. Eur. J. Pharmacol.163, 383–386 (1989).PubMedGoogle Scholar
  8. [8]
    M. Ichinose and P. J. Barnes,Histamine H 3 receptors modulate nonadrenergic noncholinergic neural bronchoconstriction in guinea pig in vivo. Eur. J. Pharmacol.174, 49–55 (1989).PubMedGoogle Scholar
  9. [9]
    M. Ichinose, M. G. Belvisi and P. J. Barnes,Histamine H 3 receptors inhibit neurogenic microvascular leakage in airways. J. Appl. Physiol.68, 21–25 (1990).PubMedGoogle Scholar
  10. [10]
    L. Enerback,Mast cell heterogeneity: The evolution of the concept of a specific mucosal mast cell. In:Mast cell Differentiation and Heterogeneity. (Eds. A. D. Befus, J. Bienenstock and J. A. Denburg). pp. 1–26, Raven Press, New York (1986).Google Scholar
  11. [11]
    H. R. P. Miller, J. F. Huntley, G. F. J. Newlands and J. Irvine,Granule chymases and the characterization of mast cell phenotype and function in rat and mouse. In:Neutral Proteases of Mast Cells. Monographs in Allergy. Vol. 27. (Ed. L. B. Schwartz). pp. 1–30, Karger, Basel 1990.Google Scholar
  12. [12]
    J. F. Huntley, A. Mackellar, G. F. J. Newlands, J. Irvine and H. R. P. Miller,Mapping of the rat mast cell granule proteinases RMCP I and II by enzyme linked immunosorbant assay and paired immunofluorescence. APMIS28, 933–944 (1990).Google Scholar
  13. [13]
    S. J. Galli,Biology of disease. New insights into “The Riddle of the Mast Cells”: Microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab. Invest.62, 5–33 (1990).PubMedGoogle Scholar
  14. [14]
    M. Swieter, S. E. Mergenhagen, and R. P., Siraganian,Microenvironmental factors that influence mast cell phenotype and function. Proc. Soc. Exp. Biol. Med.199, 22–33 (1992).PubMedGoogle Scholar
  15. [15]
    S. Gibson and H. R. P. Miller,Mast cell subsets in the rat distinguished immunohistochemically by their content of serine proteases. Immunology58, 101–104 (1986).PubMedGoogle Scholar
  16. [16]
    W. M. Hunter and F. C. Greenwood,Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature194, 494–496 (1962).Google Scholar
  17. [17]
    M. Garbarg, H. Pollard, M. D. Trung Tuong, J.-C. Schwartz and C. Gros,Sensitive radioimmunoassays for histamine and tele-methylhistamine in the brain. J. Neurochem.53, 1724–1730 (1989).PubMedGoogle Scholar
  18. [18]
    M. Garbarg, H. Pollard, T. T. Quach and J.-C. Schwartz,Methods in brain histamine research. In:Methods in Biogenic Amines Research (Eds S. Parvez, T. Nagatsu, I. Nagatsu and H. Parvez) pp. 623–662, Elsevier, Amsterdam 1983.Google Scholar
  19. [19]
    E. K. Tam, L. D. Calonico, J. A. Nadel and D. M. McDonald,Globules leucocytes and mast cells in the rat trachea: Their number, distribution and response to compound 48180 and dexamethasone. Anat. Embryol.178, 107–118 (1988).PubMedGoogle Scholar
  20. [20]
    K. Soda, S. Kawabori, M. H. Perdue and J. Bienenstock,Macrophage engulfment of mucosal mast cells in rats treated with dexamethasone. Gastroenterology100, 929–937 (1991).PubMedGoogle Scholar
  21. [21]
    S. J. King, H. R. P. Miller, G. F. J. Newlands and R. G. Woodbury,Deptetion of mucosal mast cell protease by corticosteroids: Effect on intestinal anaphylaxis in the rat. Proc. Natl. Acad. Sci. USA82, 1214–1218 (1985).PubMedGoogle Scholar
  22. [22]
    T. Räsänen,Mucosal mast cells of rat stomach: Influence of ACTH cortisone and growth hormone. Gastroenterology38, 70–75 (1960).PubMedGoogle Scholar
  23. [23]
    R. P. Schleimer,The effects of anti-inflammatory steroids on mast cells. In:The Mast Cell in Health and Disease, Vol. 62. (Eds. M. A. Kaliner and D. D. Metcalfe). pp. 483–511, Marcel Dekker, Basel 1993.Google Scholar
  24. [24]
    K. Soda, S. Kawabori, N. Kanai, J. Bienenstock and M. H. Perdue,Steroid-induced depletion of mucosal mast cells and eosinophils in intestine of athymic nude rats. Int. Arch. Allerg. Immunol.101, 39–46 (1993).Google Scholar
  25. [25]
    R. W. Schayer,Formation and binding of histamine by rat tissue in vitro. Am. J. Physiol.187, 63–65 (1956).PubMedGoogle Scholar
  26. [26]
    Y. Niwa, T. Kasugai, K. Ohno, M. Morimoto, M. Yamazaki, K. Dohmae, Y. Nishimune, K. Kondo and Y. Kitamura,Anemia and mast cell depletion in mutant rats that are homozygous at white spotting (Ws) locus. Blood78, 1936–1941 (1991).PubMedGoogle Scholar
  27. [27]
    H. Onoue, K. Maeyama, S. Nomura, T. Kasugai, H. Tei, H. M. Kim, T. Watanabe and Y. Kitamura,Absence of immature mast cells in the skin of Ws/Ws rats with a small deletion tyrosine kinase domain of the c-kit gene. Am. J. Physiol.142 1001–1007 (1993).Google Scholar
  28. [28]
    T. Kasugai, M. Odaka, M. Morimoto, N. Arizono, K. Maeyama, M. Yamada, H. Tei, K. Dohmae, H. Onoue, G. F. J. Newlands, T. Watanabe, Y. Nishimune, H. R. P. Miller and Y. Kitamura,Infection of Nippostrongylus brasiliensis, induces normal increase of basophils in mast cell deficient Ws/Ws rats with a small deletion at the kinase domain of c-kit. Blood81, 2521–2529 (1993).PubMedGoogle Scholar
  29. [29]
    I. N. M. Day,The diffuse neuroendocrine system: A molecular perspective. Mol. and Cell. Probes1, 275–295 (1987).Google Scholar
  30. [30]
    V. Dimitriadou, A. Rouleau, M. Dam Trung Tuong, G. J. F. Newlands, H. R. P. Miller, G. Luffau, J.-C. Schwartz and M. Garbarg. Clinical Science, in press.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • A. Rouleau
    • 1
  • M. Dam Trung Tuong
    • 1
  • G. F. J. Newlands
    • 2
  • H. R. P. Miller
    • 3
  • J. -C. Schwartz
    • 1
  • M. Garbarg
    • 1
  1. 1.Unite de Neurobiologie et Pharmacologie (U. 109) de l'INSERMCentre Paul BrocaParisFrance
  2. 2.Moredun Research, InstituteEdinburghUK
  3. 3.Department of Veterinary Clinical StudiesThe University of EdinburghRoslinUK

Personalised recommendations