Skip to main content
Log in

Monoclonal antibodies: A potentially powerful tool in the diagnosis and treatment of infectious diseases

  • Editorial
  • Published:
European Journal of Clinical Microbiology Aims and scope Submit manuscript

Conclusions

The hybridoma technology has made it possible to generate superior serological reagents in large amounts and to have the same reagents available indefinitely. Such monoclonal antibodies are very useful in diagnosis and epidemiology. Monoclonals have also made it possible to identify the sequences on infectious agents that are responsible for their infectivity and to generate and study both polypeptide and idiotypic vaccines. Once human monoclonals can be easily generated and produced, passive immunization may again become a major therapeutic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Köhler, G., Milstein, C.: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256: 495–497.

    PubMed  Google Scholar 

  2. Fazekas de St. Groth, S., Scheidegger, D.: Production of monoclonal antibodies: strategy and tactics. Journal of Immunological Methods 1980, 35: 1–21.

    PubMed  Google Scholar 

  3. Galfre, G., Milstein, C.: Preparation of monoclonal antibodies: strategies and procedures. Methods in Enzymology 1980, 73B: 3–46.

    Google Scholar 

  4. Herzenberg, L. A., Herzenberg, L. A., Milstein, C.: Cell hybrids with antibody forming cells and T-lymphomas with T cells. In: Weir, D. M. (ed.): Handbook of experimental immunology. Blackwell, London, 1978, p. 25.1–25.7.

    Google Scholar 

  5. Kwan, S.-P., Yelton, D. E., Scharff, M. D.: Production of monoclonal antibodies. In: Setlow, J. K., Hollaender, A. (ed.): Genetic engineering, Volume 2. Plenum, New York, 1980, p. 31–46.

    Google Scholar 

  6. Schlom, J., Wunderlich, D., Tacamoto, Y. A.: Generation of human monoclonal antibodies reactive with mammary carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America 1980, 77: 6841–6845.

    PubMed  Google Scholar 

  7. Cote, R. J., Morrissey, D. M., Houghton, A. N., Beattie, E. J. Jr., Oettgen, H. F., Old, L. J.: Generation of human monoclonal antibodies reactive with cellular antigens. Proceedings of the National Academy of Sciences of the United States of America 1982, 80: 2026–2030.

    Google Scholar 

  8. Steinitz, M., Klein, E., Koskimiso, S., Makela, O.: EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 1977, 269: 420–422.

    PubMed  Google Scholar 

  9. Sakato, N., Eisen, H. N.: Antibodies to idiotypes of isologous immunoglobulins. Journal of Experimental Medicine 1975, 141: 1411–1426.

    PubMed  Google Scholar 

  10. Fox, P. C., Berenstein, E. H., Siraganian, R. P.: Enhancing the frequency of antigen-specific hybridomas. European Journal of Immunology, 1981, 11: 431–434.

    PubMed  Google Scholar 

  11. Kenny, P. A., McCaskill, A. C., Boyle, W.: Enrichment and expansion of specific antibody forming cells by adoptive transfer and clustering, and their use in hybridoma production. Australian Journal of Experimental Biology and Medical Science 1981, 59: 427–437.

    PubMed  Google Scholar 

  12. Siraganian, R. P., Fox, P. C., Berenstein, E. H.: Methods of enhancing the frequency of antigen-specific hybridomas. Methods in Enzymology 1983, 92: 17–26.

    PubMed  Google Scholar 

  13. Boss, B. D.: An improved in vitro immunization procedure for the production of monoclonal antibodies against neural and other antigens. Brain Research 1984, 291: 193–196.

    PubMed  Google Scholar 

  14. Sternick, J. L., Sturmer, A. M.: A new high yielding immunization protocol for monoclonal antibody production against soluble antigens. Hybridoma 1984, 3: 74.

    Google Scholar 

  15. Bankert, R., Desoye, V., Powers, L.: Antigen promoted cell fusion: antigen coated myeloma cells fuse with antigen reactive spleen cells. Transplantation Proceedings 1980, 12: 443.

    PubMed  Google Scholar 

  16. Kranz, D. M., Billing, P. A., Hemon, J. N., Voss, E. W.: Modified hybridoma methodology: antigen-directed chemically mediated cell fusion. Immunological Communications 1981, 9: 639–651.

    Google Scholar 

  17. Lo, M. M. S., Tsong, T. Y., Conrad, M. K., Strittmatter, S. M., Hester, L. D., Synder, S. H.: Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature 1984, 310: 792–794.

    PubMed  Google Scholar 

  18. Perlmutter, R. M., Hansburg, D., Briles, D. E., Nicolotti, R. A., Davies, J. M.: Subclass restriction of murine anti-carbohydrate antibodies. Journal of Immunology 1978, 21: 566–572.

    Google Scholar 

  19. Spira, G., Bargellesi, A., Teillaud, J.-L., Scharff, M. D.: The identification of monoclonal class switch variants by sib selection and an ELISA assay. Journal of Immunological Methods 1984, 74: 307–315.

    PubMed  Google Scholar 

  20. Liesegang, B., Radbruch, A., Rajewsky, K.: Isolation of myeloma variants with predefined variant surface immunoglobulin by cell sorting. Proceedings of the National Academy of Sciences of the United States of America 1978, 75: 3901–3905.

    PubMed  Google Scholar 

  21. Radbruch, A., Liesegang, B., Rajewsky, K.: Isolation of variants of mouse myeloma X63 that express changed immunoglobulin class. Proceedings of the National Academy of Sciences of the United States of America 1980, 77: 2909–2913.

    PubMed  Google Scholar 

  22. Dangl, J. L., Herzenberg, L. A.: Selection of hybridoma variants using the fluorescence activated cell sorter. Jounal of Immunological Methods 1982, 52: 1–14.

    Google Scholar 

  23. Oi, V. T., Reidler, J., Dangl, J., Vung, M., Herzenberg, L. A., Stayer, L.: Effector function and segmental flexibility of immunoglobulin isotypes containing identical anti-dansyl variable regions. Journal of Cell Biology 1981, 91: 75a.

    Google Scholar 

  24. Muller, C. E., Rajewsky, K.: Isolation of immunoglobulin class switch variants from hybridoma lines secreting anti-idiotype antibodies by sequential sublining. Journal of Immunology 1983, 131: 877–881.

    Google Scholar 

  25. Cavalli-Sforza, L. L., Lederberg, J.: Isolation of preadaptive mutants in bacteria by sib selection. Genetics 1956, 41: 367–381.

    Google Scholar 

  26. Zack, D. J., Scharff, M. D.: The identification of somatic mutations in immunoglobulin expression and structure. In: Aversari, A. A., deSerres, F. J. (ed.): Single-cell mutation monitoring systems. Plenum, New York, 1984, p. 233–263.

    Google Scholar 

  27. Yelton, D. E., Scharff, M. D.: Mutant monoclonal antibodies with alterations in biological functions. Journal of Experimental Medicine 1982, 156: 1131–1148.

    PubMed  Google Scholar 

  28. Teillaud, J. L., Desaymard, C., Giusti, A. M., Haseltine, B., Pollock, R. R., Yelton, D. E., Zack, D. J., Scharff, M. D.: Monoclonal antibodies reveal the structural basis of antibody diversity. Science 1983, 222: 721–726.

    PubMed  Google Scholar 

  29. Diamond, B., Scharff, M. D.: Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. Proceedings of the National Academy of Sciences of the United States of America 1984, 81: 5841–5844.

    PubMed  Google Scholar 

  30. Yelton, D. E., Scharff, M. D.: Monoclonal antibodies: a powerful new tool in biology and medicine. Annual Review of Biochemistry 1981, 50: 657–680.

    PubMed  Google Scholar 

  31. Caton, A. J., Brownlee, G. G., Yewdell, J. W., Gerhard, W.: The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 1982, 31: 417–427.

    PubMed  Google Scholar 

  32. Newton, S. E., Air, G. M., Webster, R. G., Laver, W. G.: Sequence of the hemagglutinin gene of influenza virus A/Memphis/1/71 and previously uncharacterized monoclonal antibody-derived variants. Virology 128: 495–501.

  33. Yewdell, J. W., Gerhard, W.: Antigenic characterization of viruses by monoclonal antibodies. Annual Review of Microbiology 1981, 35: 185–206.

    PubMed  Google Scholar 

  34. Verhoeyen, M., Fang, R., Min Jou, W., Devos, R., Huylebroeck, D., Saman, E., Fiers, W.: Antigenic drift between the haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature 1980, 286: 771–776.

    PubMed  Google Scholar 

  35. Winter, G., Fields, S., Brownlee, G. G.: Nucleotide sequence of the haemagglutinin gene of a human influenza virus H1 subtype. Nature 1981, 291: 72–75.

    PubMed  Google Scholar 

  36. Breschkin, A. M., Ahern, J., White, D. O.: Antigenic determinants of the antigenic regions of influenza virus hemagglutinin determined by competitive radioimmunoassay with monoclonal antibodies. Virology 1981, 113: 130–140.

    PubMed  Google Scholar 

  37. Underwood, P. A.: Mapping of antigenic changes in the haemagglutinin of Hong Kong influenza (H3N2) strains using a large panel of monoclonal antibodies. Journal of General Virology 1982, 62: 153–169.

    PubMed  Google Scholar 

  38. Webster, R. G., Laver, W. G.: Determination of the number of nonoverlapping antigenic areas on Hong Kong (H3N2) influenza virus hemagglutin with monoclonal antibodies and the selection of variants with potential epidemiological significance. Virology 1980, 104: 139–148.

    PubMed  Google Scholar 

  39. Gerhard, W., Webster, R. G.: Antigenic drift in influenza A virus. I. Selection and characterization of antigenic variants of A/PR/8/34 (HONI) influenza virus with monoclonal antibodies. Journal of Experimental Medicine 1978, 148: 383–392.

    PubMed  Google Scholar 

  40. Laver, W. G., Air, G. M., Webster, R. G., Gerhard, W., Ward, C. W., Dopheide, T. B. A.: Antigenic drift in type A influenza virus: sequence differences in the hemagglutinin of Hong Kong (H3N2) variants selected with monoclonal hybridoma antibodies. Virology 1979, 98: 226–237.

    PubMed  Google Scholar 

  41. Laver, W. G., Gerhard, W., Webster, R. G., Frankel, M. E., Air, G. M.: Antigenic drift in type A influenza virus: peptide mapping and antigenic analysis of A/PR/ 8/34 (HONI) variants selected with monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America 1979, 76: 1425–1429.

    PubMed  Google Scholar 

  42. Lubeck, M. D., Schulman, J. L., Palese, P.: Antigenic variants of influenza viruses: marked differences in the frequencies of variants selected with different monoclonal antibodies. Virology 1980, 102: 458–462.

    PubMed  Google Scholar 

  43. Yewdell, J. W., Webster, R. G., Gerhard, W.: Antigenic variation in three distinct determinants of an influenza type A haemagglutinin molecule. Nature 1979, 279: 246–248.

    PubMed  Google Scholar 

  44. Wiley, D. C., Wilson, I. A., Shekel, J. J.: Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 1981, 289: 373–379.

    PubMed  Google Scholar 

  45. Emini, E. A., Dorner, A. J., Dorner, L. F., Jameson, B. A., Wimmer, E.: Identification of a poliovirus neutralization epitope through use of neutralizing antiserum raised against a purified viral structural protein. Virology 1983, 124: 144–151.

    PubMed  Google Scholar 

  46. Minor, P. D., Schild, G. C., Bootman, J., Evans, D. M. A., Ferguson, M., Reeve, P., Spitz, M., Stanway, G., Cann, A. J., Hauptmann, R., Clarke, L. D., Mountford, R. C., Almond, J. W.: Location and primary structure of a major antigenic site for poliovirus neutralization. Nature 1983, 301: 674–679.

    PubMed  Google Scholar 

  47. Burstin, S. J., Spriggs, D. R., Fields, B. N.: Evidence for functional domains on the reovirus type 3 hemagglutinin. Virology 1982, 117: 146–155.

    PubMed  Google Scholar 

  48. Hayes, E. C., Lee, P. W. K., Miller, S. E., Joklik, W. K.: The interaction of a series of hybridoma IgGs with reovirus particles. Demonstration that the core protein 72 is exposed on the particle surface. Virology 1981, 108: 147–155.

    PubMed  Google Scholar 

  49. Lee, P. W. K., Hayes, E. C., Joklik, W. K.: Protein 1 is the reovirus cell attachment protein. Virology 1981, 108: 156–163.

    PubMed  Google Scholar 

  50. Arnon, R.: Chemically defined antiviral vaccines. Annual Review of Microbiology 1980, 34: 593–618.

    PubMed  Google Scholar 

  51. Beachey, E. H., Seyer, J. M., Dale, J. B., Hasty, D. L.: Repeating covalent structure and protective immunogenicity of native and synthetic polypeptide fragments of type 24 streptococcal M protein. Mapping of protective and nonprotective epitopes with monoclonal antibodies. Journal of Biological Chemistry 1983, 258: 13250–13257.

    PubMed  Google Scholar 

  52. Emini, E. A., Jameson, B. A., Wimmer, E.: Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature 1983, 304: 699–703.

    PubMed  Google Scholar 

  53. Lerner, R. A.: Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature 1982, 299: 592–596.

    Google Scholar 

  54. Niman, H. L., Houghten, R. A., Walker, L. E., Reisfeld, R. A., Wilson, I. A., Hogie, J. M., Lerner, R. A.: Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition. Proceedings of the National Academy of Sciences of the United States of America 1983, 80: 4949–4953.

    PubMed  Google Scholar 

  55. Schmitz, H. E., Atassi, H., Atassi, M. Z.: Production of monoclonal antibodies with preselected submolecular binding specificities to protein antigenic sites: antibodies to sperm whale myoglobin sites. Molecular Immunology 1983, 20: 719–726.

    PubMed  Google Scholar 

  56. Shinnick, T. M., Sutcliffe, J. G., Green, N., Lerner, R. A.: Synthetic peptide immunogens as vaccines. Annual Review of Microbiology 1983, 37: 425–446.

    PubMed  Google Scholar 

  57. Green, N., Alexander, H. H., Olsen, A., Alexander, S., Shinnick, T., Sutcliffe, J. G., Lerner, R. A.: Immunogenic structure of the influenza virus hemagglutinin. Cell 1982, 28: 477–487.

    PubMed  Google Scholar 

  58. Cazenave, P.-A.: Idiotypic-anti-idiotypic regulation of antibody synthesis in rabbits. Proceedings of the National Academy of Sciences of the United States of America 1977, 74: 5122–5125.

    PubMed  Google Scholar 

  59. Urbain, J., Wilder, M., Franssen, J. D., Collignon, C.: Idiotypic regulation of the immune system by the induction of antibodies against anti-idiotypic antibodies. Proceedings of the National Academy of Sciences of the United States of America 1977, 74: 5126–5130.

    PubMed  Google Scholar 

  60. Stein, K. E., Soderstim, T.: Neonatal administration of idiotype or antiidiotype primes for protection againstEscherichia coli K13 infection in mice. Journal of Experimental Medicine 1984, 160: 1001–1011.

    PubMed  Google Scholar 

  61. Kennedy, R. C., Dreesman, G. R.: Enhancement of the immune response to hepatitis B surface antigen: in vivo administration of antiidiotype induces anti-HBs that express a similar idiotype. Journal of Experimental Medicine 1984, 159: 655–665.

    PubMed  Google Scholar 

  62. Reagan, K. J., Wunner, W. H., Wiktor, T. J., Koprowski, H.: Anti-idiotypic rabies antibodies induce neutralizing antibodies to rabies virus glycoprotein. Journal of Virology 1983, 48: 660–666.

    PubMed  Google Scholar 

  63. Ertl, H. C. J., Finberg, R. W.: Sendai virus-specific T-cell clones: Induction of cytolytic T cells by an anti-idiotypic antibody directed against a helper T-cell clone. Proceedings of the National Academy of Sciences of the United States of America 1984, 81: 2850–2854.

    PubMed  Google Scholar 

  64. Ertl, H. C. J., Romans, E., Tournas, S., Finberg, R. W.: Sendai virus-specific T cell clones V. Induction of a virus-specific response by antiidiotypic antibodies directed against a helper cell clone. Journal of Experimental Medicine 1984, 159: 1778–1783.

    PubMed  Google Scholar 

  65. Sacks, D. L., Esser, K. M., Sher, A.: Immunization of mice against African trypanosomiasis using anti-idiotypic antibodies. Journal of Experimental Medicine 1981, 155: 1108–1119.

    Google Scholar 

  66. Sacks, D. L., Sher, A.: Evidence that anti-idiotype induced immunity to experimental African trypanosomiasis is genetically restricted and requires recognition of combining site-related idiotopes. Journal of Immunology 1983, 132: 1511–1515.

    Google Scholar 

  67. Koprowski, H., Herlyn, D., Lubeck, M., DeFreitas, E., Sears, H. P.: Human anti-idiotype antibodies in cancer patients: Is the modulation of the immune response beneficial for the patient? Proceedings of the National Academy of Sciences of the United States of America 1984, 81: 216–219.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spira, G., Pollock, R.R., Bargellesi, A. et al. Monoclonal antibodies: A potentially powerful tool in the diagnosis and treatment of infectious diseases. Eur. J. Clin. Microbiol. 4, 251–256 (1985). https://doi.org/10.1007/BF02013647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02013647

Navigation