Microbial Ecology

, Volume 4, Issue 4, pp 319–330 | Cite as

Effects of ingesting mercury-containing bacteria on mercury tolerance and growth rates of ciliates

  • S. G. Berk
  • A. L. Mills
  • D. L. Hendricks
  • R. R. Colwell


The ciliateUronema nigricans was found to acquire tolerance to mercury after being fed mercury-laden bacteria followed by exposure of washed suspensions of these ciliates to various concentrations of mercury in solution. Significant differences in percent mortality were observed for ciliates fed mercury-laden bacteria compared with control suspensions fed mercury-free bacteria. The phenomenon of acquired mercury tolerance was demonstrated within a single generation time. Ciliates fed mercury-free bacteria and subsequently exposed to increasing levels of mercury in solution showed an elevated tolerance to concentrations which, on initial testing, resulted in mortality of 83% of the ciliate population. The effect of ingesting mercury-laden bacteria on growth rate ofUronema was examined, and results showed no significant differences in growth rates of both 3- and 14-day-old cultures of protozoa that had been fed mercury-laden and mercury-free bacteria under controlled conditions.


Growth Rate Mercury Nature Conservation Single Generation Generation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berk, S. G., D. C. Brownlee, D. R. Heinle, H. J. Kling, and R. R. Colwell: Ciliates as a food source for marine planktonic copepods. Microbial Ecol.4, 27–40 (1977)CrossRefGoogle Scholar
  2. 2.
    Brinckman, F. E., K. L. Jewett, W. R. Blair, W. P. Iverson, and C. Huey: Mercury distribution in the Chesapeake Bay. In P. A. Krenkel (ed.): Progress in Water Technology, pp. 251–252. Pergamon Press, New York (1974)Google Scholar
  3. 3.
    Burbanck, W. D., and D. M. Spoon: The use of sessile ciliates collected in plastic Petri dishes for rapid assessment of water pollution. J. Protozool.14, 739–744 (1967)PubMedGoogle Scholar
  4. 4.
    Carter, J. W., and I. L. Cameron: Toxicity bioassay of heavy metals in water usingTetrahymena pyriformis. Water Res.7, 951–961 (1973)CrossRefGoogle Scholar
  5. 5.
    Clark, D. L., A. A. Weiss, and S. Silver: Mercury and organo-mercurial resistances determined by plasmids inPsuedomonas. J. Bacteriol.132, 186–196 (1977)PubMedGoogle Scholar
  6. 6.
    Curds, C. R.: The role of protozoa in the activated-sludge process. Am. Zool.13, 161–169 (1973)Google Scholar
  7. 7.
    Curds, C. R., and G. Fey: The effect of ciliated protozoa on the fate ofEscherichia coli in the activated sludge process. Water Res.3, 853–867 (1969)CrossRefGoogle Scholar
  8. 8.
    Davies, A. G.: An assessment of the basis of mercury tolerance inDunaliella tertiolecta. J. Mar. Biol. Assoc. U. K.56, 39–57 (1976)Google Scholar
  9. 9.
    Gray, J. S., and R. T. Ventilla: Pollution effects on micro and meiofauna of sand. Mar. Pollut. Bull.2, 39–43 (1971)CrossRefGoogle Scholar
  10. 10.
    Gray, J. S., and R. T. Ventilla: Growth rates of sediment living marine protozoan as a toxicity indicator for heavy metals. Ambio2, 118–121 (1973)Google Scholar
  11. 11.
    Hamilton, R. D., and J. E. Preslan: Cultural characteristics of a pelagic marine hymenostome ciliate,Uronema sp. J. Exp. Mar. Biol. Ecol.4, 90–99 (1969)CrossRefGoogle Scholar
  12. 12.
    Heinle, D. R., R. P. Harris, J. F. Ustach, and D. A. Flemer: Detritus as food for estuarine copepods. Mar. Biol.40, 341–353 (1977)CrossRefGoogle Scholar
  13. 13.
    Izaki, K.: Enzymatic reduction of mercurous ions inEscherichia coli bearing R factor. J. Bacteriol.131, 696–698 (1977)PubMedGoogle Scholar
  14. 14.
    Johannes, R. E.: Influence of marine protozoa on nutrient regeneration. Liminol. Oceanogr.10, 434–442 (1965)Google Scholar
  15. 15.
    Jollos, V.: Dauermodifikationen und Mutationen bei Protozoen. Arch. Protistenk.83, 197–219 (1934)Google Scholar
  16. 16.
    Mills, A. L., and R. R. Colwell: Microbial effects of metal ions in Chesapeake Bay water and sediment. Bull. Environ. Contam. Toxicol.18, 99–103 (1977)CrossRefPubMedGoogle Scholar
  17. 17.
    Mills, W. L.: Mercury toxicity to selected protozoa. J. Protozool.20, 497 (1973)Google Scholar
  18. 18.
    Nelson, J. D., Jr., and R. R. Colwell: Ecology of mercury-resistant bacteria in Chesapeake Bay. Microbial Ecol.1, 191–218 (1975)Google Scholar
  19. 19.
    Parrish, K. M., and R. A. Carr: Transport of mercury through a laboratory two-level marine food chain. Mar. Pollut. Bull.7, 90–91 (1976)CrossRefGoogle Scholar
  20. 20.
    Persoone, G., and G. Uyttersprot: The influence of inorganic and organic pollutants on the rate of reproduction of a marine hypotrichous ciliate:Euplotes vannus Müller. Rev. Int. Oceanogr. Med.37, 125–151 (1975)Google Scholar
  21. 21.
    Sartory, D. P., and B. J. Lloyd: The toxic effects of selected heavy metals on unadapted populations ofVorticella convallaria var similis. Water Res.10, 1123–1127 (1976)CrossRefGoogle Scholar
  22. 22.
    Summers, A. O., and L. I. Sugarman: Cell-free mercury (II)-reducing activity in a plasmidbearing strain ofEscherichia coli. J. Bacteriol.119, 242–249 (1974)PubMedGoogle Scholar
  23. 23.
    Thrasher, J. D.: The effects of mercuric compounds on dividing cells. In A. M. Zimmerman, G. M. Padilla, and I. L. Cameron (eds.): Drugs and the Cell Cycle, pp. 25–48. Academic Press, New York (1973)Google Scholar
  24. 24.
    Tingle, L. E., W. A. Pavlat, and I. L. Cameron: Sublethal cytotoxic effects of mercuric chloride on the ciliateTetrahymena pyriformis. J. Protozool.20, 301–304 (1973)PubMedGoogle Scholar
  25. 25.
    Vaituzis, L., J. D. Nelson, L. W. Wan, and R. R. Colwell: Effects of mercuric chloride on growth and morphology of selected strains of mercury-resistant bacteria. Appl. Microbiol.29, 275–286 (1975)PubMedGoogle Scholar
  26. 26.
    Weiss, A. A., S. D. Murphy, and S. Silver: Mercury and organomercurial resistances determined by plasmids inStaphylococcus aureus. J. Bacteriol.132, 197–208 (1977)PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • S. G. Berk
    • 1
  • A. L. Mills
    • 1
  • D. L. Hendricks
    • 1
  • R. R. Colwell
    • 1
  1. 1.Department of MicrobiologyUniversity of MarylandCollege Park

Personalised recommendations