Microorganisms and heavy metal toxicity

Abstract

The environmental and microbiological factors that can influence heavy metal toxicity are discussed with a view to understanding the mechanisms of microbial metal tolerance. It is apparent that metal toxicity can be heavily influenced by environmental conditions. Binding of metals to organic materials, precipitation, complexation, and ionic interactions are all important phenomena that must be considered carefully in laboratory and field studies. It is also obvious that microbes possess a range of tolerance mechanisms, most featuring some kind of detoxification. Many of these detoxification mechanisms occur widely in the microbial world and are not only specific to microbes growing in metal-contaminated environments.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abelson, P. H., and E. Aldous: Ion antagonisms in microorganisms: interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc, and manganese. J. Bacteriol.60, 401–413 (1950)

    PubMed  Google Scholar 

  2. 2.

    Albert, A.:Selective Toxicity. Methuen, London (1965)

    Google Scholar 

  3. 3.

    Ashida, J.: Adaptation of fungi to metal toxicants. Annu. Rev. Phytopathol.3, 153–174 (1965)

    Article  Google Scholar 

  4. 4.

    Ashida, J., N. Higashi, and T. Kikuchi: An electron microscope study on copper precipitations by copper resistant yeast cells. Protoplasma57, 27–32 (1963)

    Article  Google Scholar 

  5. 5.

    Ashida, J., and H. Nakamura: Role of sulphur metabolism in copper resistance of yeast. Plant Cell Physiol.1, 71–79 (1959)

    Google Scholar 

  6. 6.

    Ashworth, L. J., and J. V. Amin: A mechanism for mercury tolerance in fungi. Phytopathology54, 1459–1463 (1964)

    Google Scholar 

  7. 7.

    Avakyan, Z. A.: Comparative toxicity of free ions and complexes of copper and amino acids toCandida utilis. Microbiology40, 363–368 (1971)

    PubMed  Google Scholar 

  8. 8.

    Babich, H., and G. Stotzky: Reductions in the toxicity of cadmium to microorganisms by clay minerals. Appl. Environ. Microbiol.33, 696–705 (1977)

    Google Scholar 

  9. 9.

    Babich, H., and G. Stotzky: Effect of cadmium on fungi and on interactions between fungi and bacteria in soil: influence of clay minerals and pH. Appl. Environ. Microbiol.33, 1059–1066 (1977)

    PubMed  Google Scholar 

  10. 10.

    Bachenheimer, A. G., and E. O. Bennett: The sensitivity of mixed populations of bacteria to inhibitors. 1. The mechanism by whichDesulfovibrio desulfuricans protectsPseudomonas aeruginosa from the toxicity of mercurials. Antonie van Leeuwenhoek27, 180–188 (1961)

    PubMed  Google Scholar 

  11. 11.

    Bachmann, R. W.: Zinc-65 in studies of the fresh water zinc cycle. Proceedings of the First National Symposium on Radioecology, Fort Collins, Colorado, 1961, pp. 485–495. Reinhold, New York (1963)

    Google Scholar 

  12. 12.

    Basu, S. N., R. G. Bose, and J. P. Bhattacharyya: Some physiological studies on a copper tolerantPenicillium species. J. Sci. Ind. Res.14, 46–53 (1955)

    Google Scholar 

  13. 13.

    Benes, P., E. T. Gjessing, and E. Steinnes: Interactions between humus and trace elements in fresh water. Water Res.10, 711–716 (1976)

    Article  Google Scholar 

  14. 14.

    Bennett, H. D.: Algae in relation to mine water. Castanea34, 306–328 (1969)

    Google Scholar 

  15. 15.

    Bowen, H. J. M.:Trace Elements in Biochemistry. Academic Press, New York (1966)

    Google Scholar 

  16. 16.

    Broda, E.: Uptake of heavy cationic trace elements by microorganisms. Annu. Microbiol. Enzymol.22, 93–108 (1972)

    Google Scholar 

  17. 17.

    Brunker, R. L., and T. L. Bott: Reduction of mercury to the elemental state by a yeast. Appl. Microbiol.27, 870–873 (1974)

    PubMed  Google Scholar 

  18. 18.

    Bucheder, F., and E. Broda: Energy-dependent zinc transport byEscherichia coli. Eur. J. Biochem.45, 555–559 (1974)

    Article  PubMed  Google Scholar 

  19. 19.

    Buckman, H. O., and N. C. Brady:The Nature and Properties of Soils. Macmillan, London (1969)

    Google Scholar 

  20. 20.

    Carpenter, K. E.: A study of the fauna of rivers polluted by lead mining in the Aberystwyth district of Cardiganshire. Ann. Appl. Biol.11, 1–23 (1924)

    Google Scholar 

  21. 21.

    Chopra, I.: Decreased uptake of cadmium by a resistant strain ofStaphylococcus aureus. J. Gen. Microbiol.63, 265–267 (1971)

    Google Scholar 

  22. 22.

    Chopra, I.: Mechanism of plasmid-mediated resistance to cadmium inStaphylococcus aureus, Antimicrob. Agents Chemother.7, 8–14 (1975)

    Google Scholar 

  23. 23.

    Cole, M. A.: Lead inhibition of enzyme synthesis in soil. Appl. Environ. Microbiol.33, 262–268 (1977)

    PubMed  Google Scholar 

  24. 24.

    Cox, D. P., and M. Alexander: Effect of phosphate and other anions on trimethyl arsine formation byCandida humicola. Appl. Microbiol.25, 408–413 (1973).

    PubMed  Google Scholar 

  25. 25.

    Doyle, J. J., R. J. Marshall, and W. H. Pfander: Effects of cadmium on the growth and uptake of cadmium by microorganisms. Appl. Microbiol.29, 562–564 (1975)

    PubMed  Google Scholar 

  26. 26.

    Ehrlich, H. L.: Microorganisms in acid drainage from a copper mine. J. Bacteriol.86, 350–352 (1963)

    PubMed  Google Scholar 

  27. 27.

    Ehrlich, H. L.: Biogeochemistry of the minor elements in soil. Soil Biochem.2, 361–385 (1971)

    Google Scholar 

  28. 28.

    Ehrlich, H. L. and S. I. Fox: Copper sulphide precipitation by yeasts from acid mine-waters. Appl. Microbiol.15, 135–139 (1967)

    Google Scholar 

  29. 29.

    Englander, C. M., and M. E. Corden: Stimulation of mycelial growth ofEndothia parasitica by heavy metals. Appl. Microbiol.22, 1012–1016 (1971)

    PubMed  Google Scholar 

  30. 30.

    Ennis, M. T., and J. C. Brogan: The availability of copper from copper-humic acid complexes. Ir. J. Agric. Res.1, 35–42 (1961)

    Google Scholar 

  31. 31.

    Failla, M. L., C. D. Benedict, and E. D. Weinberg: Accumulation and storage of zinc byCandida utilis. J Gen. Microbiol.94, 23–36 (1976)

    PubMed  Google Scholar 

  32. 32.

    Failla, M. L., and E. D. Weinberg: Cyclic accumulation of zinc byCandida utilis during growth in batch culture. J. Gen. Microbiol.99, 85–97 (1977)

    PubMed  Google Scholar 

  33. 33.

    Ferstenberg, L. B., P. M. Stokes, and B. Silverberg: An electron microscope study of copper inScenedesmus. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada C298-C300 (1975)

  34. 34.

    Fleming, R. W., and M. Alexander: Dimethylselenide and dimethyltellurite formation by a strain ofPenicillium. Appl. Microbiol.24, 424–429 (1972)

    PubMed  Google Scholar 

  35. 35.

    Fogg, G. E., and D. F. Westlake: The importance of extracellular products of algae in freshwater. Verh. Int. Verein, theor. angew, Limnol.12, 219–232 (1955)

    Google Scholar 

  36. 36.

    Frey, S. W., W. G. Dewitt, and B. R. Bellomy: The effect of several trace metals on fermentation. Proceedings of the American Society of Brewing Chemistry, 199–205 (1967)

  37. 37.

    Friedman, B. A. and P. R. Dugan: Concentration and accumulation of metallic ions by the bacteriumZoogloea. Dev. Ind. Microbiol.9, 381–388 (1968)

    Google Scholar 

  38. 38.

    Fuhrman, G. F., and A. Rothstein: The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochem. Biophys. Acta163, 325–330 (1968)

    PubMed  Google Scholar 

  39. 39.

    Griffiths, A. J., D. E. Hughes, and D. Thomas: Some aspects of microbial resistance to metal pollution. In M. J. Jones (Ed.):Minerals and the Environment, pp. 387–394. Institution of Mining and Metallurgy, Washington, D.C. (1975)

    Google Scholar 

  40. 40.

    Groves, D. J., and F. E. Young: Epidemiology of antibiotic and heavy metal resistance in bacteria: resistance patterns inStaphylococci isolated from populations not known to be exposed to heavy metals. Antimicrob. Agents Chemother.7, 614–621 (1975)

    PubMed  Google Scholar 

  41. 41.

    Groves, D. J., H. Short, Thewaini, A. J. and F. E. Young: Epidemiology of antibiotic and heavy metal resistance in bacteria: resistance patterns inStaphylococci isolated from populations in Iraq exposed and not exposed to heavy metals or antibiotics. Antimicrob. Agents Chemother.7, 622–628 (1975)

    PubMed  Google Scholar 

  42. 42.

    Haavik, H. I.: On the role of bacitracin peptides in trace metal transport inBacillus licheniformis. J. Gen. Microbiol.96, 393–399 (1976)

    PubMed  Google Scholar 

  43. 43.

    Hamdy, M. K., and O. R. Noyes: Formation of methyl mercury by bacteria. Appl. Microbiol.30, 424–432 (1975)

    PubMed  Google Scholar 

  44. 44.

    Hartig, W. J.: Studies of mercury toxicity inTetrahymena pyriformis. J. Protozool.18, Suppl. 26 (1971)

    Google Scholar 

  45. 45.

    Hassall, K.: An asymmetric respiratory response occurring when fluoride and copper ions are applied jointly toChlorella vulgaris. Physiol. Plantarum22, 304–311 (1967)

    Google Scholar 

  46. 46.

    Hodgson, J. F.: Chemistry of the micronutrient elements in soils. Adv. Agron.15, 119–159 (1963)

    Google Scholar 

  47. 47.

    Holm, H. W., and M. F. Cox: Transformation of elemental mercury by bacteria. Appl. Microbiol.29, 491–494 (1975)

    PubMed  Google Scholar 

  48. 48.

    Huey, C. W., F. E. Brinckman, W. P. Iverson, and S. O. Grim: Bacterial volatilization of cadmium. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada, C214-C216 (1975)

  49. 49.

    Jellinek, H., and S. Sangal: Complexation of metal ions with natural polyelectrolytes (removal and recovery of metal ions from polluted waters). Water Res.6, 305–314 (1972)

    Article  Google Scholar 

  50. 50.

    Jensen, S., and A. Jernelov: Biological methylation of mercury in aquatic organisms. Nature223, 753–754 (1969)

    PubMed  Google Scholar 

  51. 51.

    Jernelov, A., and A. L. Martin: Ecological implications of metal metabolism by microorganisms. Annu. Rev. Microbiol.29, 61–77 (1975)

    Article  PubMed  Google Scholar 

  52. 52.

    Jones, H. E., P. A. Trudinger, Chambers, L. A. and N. A. Pyliotis: Metal accumulation by bacteria with particular reference to dissimilatory sulphate-reducing bacteria. Z. Allg. Mikrobiol.16, 425–435 (1976)

    PubMed  Google Scholar 

  53. 53.

    Jones, J. R. E.: A study of the zinc-polluted river Ystwyth in North Cardiganshire, Wales. Ann. Appl. Biol.27, 367–378 (1940)

    Google Scholar 

  54. 54.

    Jones, J. R. E.: A further study of the zinc-polluted river Ystwyth. J. Anim. Ecol.27, 1–14 (1958)

    Google Scholar 

  55. 55.

    Khovrytchev, M. P., C. Strunk, E. Schuhmann, S. A. Lirova, and I. L. Rabotnova: Einflub des Cu2+-ionen auf den morphologischen, cytologischen und physiologischen Zustand vonCandida utilis-Zellen bei Kontinuierlicher kultivierung. Z. Allg. Mikrobiol.17, 29–45 (1977)

    PubMed  Google Scholar 

  56. 56.

    Kikuchi, T.: Comparison of original and secondarily developed copper resistance of yeast strains. Bot. Mag.77, 395–402 (1964)

    Google Scholar 

  57. 57.

    Kikuchi, T.: Some aspects of relationship between hyper-hydrogen sulphide-producing activity and copper resistance of yeast. Mem. Coll. Sci., Kyoto Univ.B31, 113–124 (1964)

    Google Scholar 

  58. 58.

    Kikuchi, T.: Studies on the pathway of sulphide production in a copper-adapted yeast. Plant Cell Physiol.6, 195–210 (1965)

    Google Scholar 

  59. 59.

    Komura, I., and K. Izaki: Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistant strains ofEscherchia coli. J. Biochem.70, 885–893 (1971)

    PubMed  Google Scholar 

  60. 60.

    Kondo, I., T. Ishikawa, and H. Nakahara: Mercury and cadmium resistances mediated by the penicillinase plasmid inStaphylococcus aureus. J. Bacteriol.117, 1–4 (1974)

    PubMed  Google Scholar 

  61. 61.

    Laborey, F., and J. Lavollay: Sur l'antitoxicite du calcium et du magnesium a l'egard du cadmium, dans la croissance d'Aspergillus niger. C.R. Acad. Sci. [D] (Paris)284, 639–642 (1977)

    Google Scholar 

  62. 62.

    Lawrence, A. W., and P. L. McCarty: The role of sulphide in preventing metal toxicity in anaerobic treatment. J. Water Pollut. Control Fed.37, 392–406 (1965)

    Google Scholar 

  63. 63.

    Lindegren, C. C.: The mitochondria in intoxication and detoxication. Physiol. Chem. Phys.3, 499–500 (1971)

    Google Scholar 

  64. 64.

    Lindegren, C. C., P. M. Bemiller, K.-C. Liu, and G. Lindegren: Staining yeast cells for electron microscopy by growth in copper containing nutrient broth. Antonie van Leeuwenhoek38, 17–26 (1972)

    PubMed  Google Scholar 

  65. 65.

    Lindegren, C. C., and G. Lindegren: Oxidative detoxification of thallium in the yeast mitochondria. Antonie van Leeuwenhoek39, 351–353 (1973)

    PubMed  Google Scholar 

  66. 66.

    MacLeod, R. A., S. C. Kuo, and R. Gelinas: Metabolic injury to bacteria. II. Metabolic injury induced by distilled water or copper in the plating diluent. J. Bacteriol.93, 961–969 (1967)

    PubMed  Google Scholar 

  67. 67.

    Magos, L., A. A. Tuffery, and T. W. Clarkson: Volatilization of mercury by bacteria. Br. J. Ind. Med.21, 294–298 (1964)

    PubMed  Google Scholar 

  68. 68.

    Manning, H. L., and T. M. Cooke: Physiology of acidophilic bacteria of acid mine water. Completion Report A-016-Md, Water Resources Research Center, University of Maryland, College Park (1972)

    Google Scholar 

  69. 69.

    McDermott, G. N., W. A. Moore, M. A. Post, and M. B. Ettinger: Effects of copper on aerobic biological sewage treatment. J. Water Pollut. Control Fed.35, 227–241 (1963)

    Google Scholar 

  70. 70.

    Milanovich, F., D. Wilson, and Y. Yeh: The detoxifying effect of yellow substance onEscherichia coli in media containing copper. Nature253, 460–461 (1975)

    Article  PubMed  Google Scholar 

  71. 71.

    Murray, A. D., and D. K. Kidby: Sub-cellular location of mercury in yeast grown in the presence of mercuric chloride. J. Gen. Microbiol.86, 66–74 (1975)

    PubMed  Google Scholar 

  72. 72.

    Naiki, N.: Studies on the adaption of yeast to copper. XVIII. Copper binding binding sulphur substances of the copper-resistant substrain. Mem. Coll. Sci. Kyoto Univ.B24, 243–248 (1957)

    Google Scholar 

  73. 73.

    Nakahata, H., T. Ishikawa, Y. Sarai, I. Kondo, H. Kozukue, and S. Silver: Linkage of mercury, cadmium and arsenate and drug resistance in clinical isolates ofPseudomonas aeruginosa. Appl. Environ. Microbiol.33, 975–976 (1977)

    PubMed  Google Scholar 

  74. 74.

    Nelson, J. D., W. Blair, F. E. Brinckman, R. R. Colwell, and W. P. Iverson: Biodegradation of phenylmercuric acetate by mercury resistant bacteria. Appl. Microbiol.26, 231–326 (1973)

    PubMed  Google Scholar 

  75. 75.

    Norris, P. R., and D. P. Kelly: Accumulation of cadmium and cobalt bySaccharomyces cerevisiae. J. Gen. Microbiol.99, 317–324 (1977)

    Google Scholar 

  76. 76.

    Norris, P. R., W. K. Man, M. N. Hughes, and D. P. Kelly: Toxicity and accumulation of thallium in bacteria and yeast. Arch. Microbiol.110, 279–286 (1976)

    Article  PubMed  Google Scholar 

  77. 77.

    Novick, R. P.: Extrachromosomal inheritance in bacteria. Bacteriol. Rev.33, 210–263 (1969)

    PubMed  Google Scholar 

  78. 78.

    Novick, R. P., and C. Roth: Plasmid-linked resistance to inorganic salts inStaphylococcus aureus. J. Bacteriol.95, 1335–1342 (1968)

    PubMed  Google Scholar 

  79. 79.

    Oura, E., and H. Suomalainen: Yeast nutrition and solute uptake. In A. H. Rose and J. S. Harrison (Eds.):The Yeasts, Vol. 2, pp. 3–74. Academic Press, London (1971)

    Google Scholar 

  80. 80.

    Passow, H., A. Rothstein, and T. W. Clarkson: The general pharmacology of heavy metals. Pharmacol. Rev.13, 185–224 (1961)

    PubMed  Google Scholar 

  81. 81.

    Paton, W. H. N., and K. Budd: Zinc uptake inNeocosmospora vasinfecta. J. Gen. Microbiol.72, 173–184 (1972)

    Google Scholar 

  82. 82.

    Pickett, A. W., and A. C. R. Dean: Cadmium and zinc sensitivity and tolerance inKlebsiella (Aerobacter) aerogenes. Microbiology15, 79–91 (1976)

    Google Scholar 

  83. 83.

    Ramamoorthy, S., and D. J. Kushner: Binding of heavy metal ions by river water. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada D19–D21 (1975)

  84. 84.

    Ramamoorthy, S., and D. J. Kushner: Binding of mercuric and other heavy metal ions by microbial growth media. Microbial Ecol.2, 162–176 (1975)

    Article  Google Scholar 

  85. 85.

    Reese, M. J.: The microflora of the non-calcareous streams Rheidol and Melindwr with special reference to water pollution from lead mines in Cardiganshire. J. Ecol.25, 385–407 (1937)

    Google Scholar 

  86. 86.

    Rogers, R. D.: Methylation of mercury in the terrestial environment. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada C218–C219 (1975)

  87. 87.

    Ross, I.S.: Some effects of heavy metals on fungal cells. Trans. Br. Mycol. Soc.64, 175–193 (1975)

    Google Scholar 

  88. 88.

    Rothstein, A., and A. D. Hayes: The relationship of the cell surface to metabolism. XIII. The cation binding properties of the yeast cell surface. Arch. Biochem. Biophys.63, 87–99 (1956)

    Article  PubMed  Google Scholar 

  89. 89.

    Sadler, W. R., and P. A. Trudinger: The inhibition of microorganisms by heavy metals. Mineral Dep.2, 158–168 (1967)

    Google Scholar 

  90. 90.

    Saxena, J., and P. H. Howard: Environmental transformation of alkylated and inorganic forms of certain metals. Adv. Appl. Microbiol.21, 185–227 (1977)

    PubMed  Google Scholar 

  91. 91.

    Schottel, J., A. Mandal, D. Clark, and S. Silver: Volatization of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature251, 335–337 (1974)

    Article  PubMed  Google Scholar 

  92. 92.

    Silver, S., J. Schottel, and A. Weiss: Bacterial resistance to toxic metals determined by extrachromosomal R-factors. In J. M. Sharpley and A. M. Kaplan (Eds.):Proceedings of the Third International Biodegradation Symposium, pp. 899–917. Applied Science Publishers, London (1976)

    Google Scholar 

  93. 93.

    Singh, A., and F. Sherman: Association of methionine requirement with methyl mercury resistant mutants of yeast. Nature247, 227–229 (1974)

    Article  PubMed  Google Scholar 

  94. 94.

    Singh, A., and F. Sherman: Characteristics and relationships of mercury resistant mutants and methionine auxotrophs of yeast. J. Bacteriol.118, 911–918 (1974)

    PubMed  Google Scholar 

  95. 95.

    Smith, K., and R. P. Novick: Genetic studies on plasmid-linked cadmium resistance inStaphylococcus aureus. J. Bacteriol.112, 761–772 (1972)

    PubMed  Google Scholar 

  96. 96.

    Spangler, W. J., J. L. Spigarelli, J. M. Rose, R. S. Flippin, and H. H. Miller: Degradation of methylmercury by bacteria isolated from environmental samples. Appl. Microbiol.25, 488–493 (1973)

    PubMed  Google Scholar 

  97. 97.

    Starkey, R. L., and S. A. Waksman: Fungi tolerant to extreme acidity and high concentrations of copper sulphate. J. Bacteriol.45, 509–519 (1943)

    Google Scholar 

  98. 98.

    Steemann Nielsen, E., and L. Kamp-Nielsen: Influence of deleterious concentrations of copper on the growth ofChlorella pyrenoidosa. Physiol. Plantarum22, 1121–1133 (1970)

    Google Scholar 

  99. 99.

    Steemann Nielsen, E., and S. Wium-Andersen: Copper ions as poison in the sea and in freshwater. Mar. Biol.6, 93–97 (1970)

    Article  Google Scholar 

  100. 100.

    Stevenson, F. J.: Binding of metal ions by humic acids. In J. O. Nriagu (Ed.):Environmental Biogeochemistry, Vol. 2, pp. 519–540. Ann Arbor Science, Ann Arbor, Mich. (1976)

    Google Scholar 

  101. 101.

    Stutzenberger, F. J., and E. O. Bennett: Sensitivity of mixed populations ofStaphylococcus aureus andEscherichia coli to mercurials. Appl. Microbiol.13, 570–574 (1965)

    PubMed  Google Scholar 

  102. 102.

    Summers, A. O., and E. Lewis: Volatilization of mercuric chloride by mercury-resistant plasmid-bearing strains ofEscherichia coli, Staphylococcus aureus andPseudomonas aeruginosa. J. Bacteriol.113, 1070–1072 (1973)

    PubMed  Google Scholar 

  103. 103.

    Summers, A. O., and S. Silver: Mercury resistance in a plasmid bearing strain ofEscherichia coli. J. Bacteriol.112, 1228–1236 (1973)

    Google Scholar 

  104. 104.

    Tabillion, R., and H. Kaltwasser: Energy-dependent63Ni-uptake byAlcaligenes eutrophus strains H1 and H16. Arch. Microbiol.113, 145–151 (1977)

    Article  PubMed  Google Scholar 

  105. 105.

    Temple, K. L., and N. W. Le Roux: Syngenesis of sulphide ores: desorption of adsorbed metal ions and their precipitation as sulphides. Econ. Geol.59, 647–655 (1964)

    Google Scholar 

  106. 106.

    Tonomura, K., K. Maeda, and F. Futai: Studies on the action of mercury-resistant microorganisms on mercurials. II. The vaporization of mercurials stimulated by mercury-resistant bacterium. J. Ferment. Technol.46, 685–692 (1968)

    Google Scholar 

  107. 107.

    Tuovinen, O. H., S. I. Niemela, and H. G. Gyllenberg: Tolerance ofThiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek37, 489–496 (1971)

    PubMed  Google Scholar 

  108. 108.

    Tynecka, Z., J. Zajac, and Z. Gos: Plasmid dependent impermeability barrier to cadmium ions inStaphylococcus aureus. Acta Microbiol. Polon.7, 11–20 (1975)

    Google Scholar 

  109. 109.

    Vaituzis, Z., J. D. Nelson, L. W. Wan, and R. R. Colwell: Effects of mercuric chloride on growth and morphology of selected strains of mercury-resistant bacteria. Appl. Microbiol.29, 275–286 (1975)

    PubMed  Google Scholar 

  110. 110.

    Venkateswerlu, G., and K. S. Sastry: The mechanism of uptake of cobalt ions byNeurospora crassa. Biochem. J.118, 497–503 (1970)

    PubMed  Google Scholar 

  111. 111.

    Vonk, J. W., and A. K. Sijpesteijn: Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi. Antonie van Leeuwenhoek39, 505–513 (1973)

    PubMed  Google Scholar 

  112. 112.

    Walker, J. D., and R. R. Colwell: Mercury-resistant bacteria and petroleum degradation. Appl. Microbiol.27, 285–287 (1974)

    PubMed  Google Scholar 

  113. 113.

    White, J., and D. J. Munns: Inhibitory effect of common elements towards yeast growth. J. Inst. Brewing57, 175–179 (1951)

    Google Scholar 

  114. 114.

    Whitton, B. A., and P. J. Say: Heavy metals. In B. A. Whitton (Ed.):River Ecology, pp. 286–312. Blackwell Scientific Publications, Oxford (1975)

    Google Scholar 

  115. 115.

    Williams, J. I., and G. J. F. Pugh: Resistance ofChrysosporum pannorum to an organomercury fungicide. Trans. Br. Mycol. Soc.64, 255–263 (1974)

    Google Scholar 

  116. 116.

    Wong, P. T. S., Y. K. Chau, P. L. Luxon, and B. Silverberg: Methylation of lead and selenium in the environment. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada C220-C221 (1975)

  117. 117.

    Young, R. G., and D. J. Lisk: Effect of copper and silver ions on algae. J. Water Pollut. Control Fed.44, 1643–1647 (1972)

    Google Scholar 

  118. 118.

    Zajic, J. E.:Microbiol Biogeochemistry. Academic Press, New York (1969)

    Google Scholar 

  119. 119.

    Zimmerman, L.: Toxicity of copper and ascorbic acid toSerratia marcescens. J. Bacteriol. 1537–1542 (1966)

  120. 120.

    Zlochevskaya, I. V.: Toxic effects of a lead complex with DL-cysteine onAspergillus niger. Microbiology37, 709–714 (1968)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gadd, G.M., Griffiths, A.J. Microorganisms and heavy metal toxicity. Microb Ecol 4, 303–317 (1977). https://doi.org/10.1007/BF02013274

Download citation

Keywords

  • Precipitation
  • Heavy Metal
  • Toxicity
  • Microbe
  • Field Study