Calcified Tissue Research

, Volume 26, Issue 1, pp 221–226 | Cite as

Effects produced by the administration of high doses of 1,25-dihydroxycholecalciferol to the chick embryo

  • Roberto Narbaitz
  • Susan Tolnai
Article

Summary

White Leghorn chick embryos were injected on the 15th day of incubation with 70 to 300 pmoles 1,25-(OH)2D3. All doses produced hypercalcemia; with the highest dose, the concentration of calcium in serum started to rise 4 h after the injection, reached a peak 20 h after, and was still high 48 h after. Twenty hours after the injection of the same dose, the concentration of inorganic phosphorus in the serum was significantly lower than in the corresponding controls.

The tibias from 17-day-old chick embryos injected with 300 pmoles on day 15 were shorter, lighter, and had a lower ash content than those from controls. Histological signs of resorption appeared to be reduced with respect to controls, but no precise quantitation was conducted.

The fact that hypercalcemia was not accompanied by hyperphosphatemia may suggest that the vitamin stimulates resorption of calcium from the shell, which is mainly formed by calcium carbonate rather than from the bone from which calcium and phosphate are usually resorbed together.

Key words

1,25(OH)2D3 Hypervitaminosis D Hypercalcemia Bone Mineralization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnston, P.M., Comar, C.L.: Distribution and contribution of calcium from the albumen, yolk and shell to the developing chick embryo. Am. J. Physiol.183:365–370, 1955PubMedGoogle Scholar
  2. 2.
    Nozaki, H., Horii, S., Takei, Y.: Utilization of shell calcium by chick embryo, Bull. Natl. Inst. Agric. Sci.G.9:89–95, 1954Google Scholar
  3. 3.
    Narbaitz, R.: Submicroscopical aspects of chick embryo parathyroid glands, Gen. Comp. Endocrinol.19:253–258, 1972PubMedGoogle Scholar
  4. 4.
    Narbaitz, R.: The response of chick embryos, to exogenous parathyroid hormone, Gen. Comp. Endocrinol.27:122–124, 1975PubMedGoogle Scholar
  5. 5.
    Narbaitz, R., Gartke, K.: Fine structure of chick embryonic parathyroid glands cultured on media with different concentrations of calcium, Rev. Can. Biol.34: 91–100, 1975PubMedGoogle Scholar
  6. 6.
    Narbaitz, R., Tellier, P.: The differentiation of chick chorionic epithelium; an experimental study, J. Embryol. Exp. Morphol.32:365–374, 1974PubMedGoogle Scholar
  7. 7.
    Needham, J.: Chemical Embryology, vol. 3, pp. 1360–1363. Cambridge University Press, Cambridge, 1931Google Scholar
  8. 8.
    Karb, V.B.: Histologische Untersuchungen der durch Vitamin D-Mangel der Hennen hervogerufenen Gewegesschaden bei Huhnerembryonen, Tierphysiol. Tiererna Futtermettel.25:43–62, 1969Google Scholar
  9. 9.
    Moriuchi, S., DeLuca, H.F.: Metabolism of vitamin D3 in the chick embryo, Arch. Biochem. Biophys.164:165–171, 1974PubMedGoogle Scholar
  10. 10.
    DeLuca, H.F.: The kidney as an endocrine organ, Kidney Int.4:80–88, 1973PubMedGoogle Scholar
  11. 11.
    Norman, W.A.: Hormone-like action of 1,25-dihydroxycholecalciferol, metabolite of fat soluble vitamin D in the intestine, Vitam. Horm.32:326–384, 1974Google Scholar
  12. 12.
    Corradino, R.A., Wasserman, R.H.: 1,25-Dihydroxycholecalciferol-like activity ofSolanum malacoxylon extract on calcium transport, Nature252:716–718, 1974PubMedGoogle Scholar
  13. 13.
    Haussler, M.R., Hughes, M.R., McCain, T.A., Zerwihk, J.E., Brumbaugh, P.F., Jubiz, W., Wasserman, R.H.: 1,25-Dihydroxyvitamin D3: Mode of action in intestine and parathyroid glands; Assay in humans and isolation of its glycoside fromSolanum malacoxylon, Calcif. Tissue Res. [Suppl.]22:1–8, 1977PubMedGoogle Scholar
  14. 14.
    Narbaitz, R., Carrillo, B.J.: Production of hypercalcemia in the chick embryo by an extract ofSolanum malacoxylon, Rev. Can. Biol.35:181–184, 1976PubMedGoogle Scholar
  15. 15.
    Narbaitz, R.: Production of hypercalcemia in the chick embryo by exogenous parathyroid hormone,Solanum malacoxylon and 1,25-dihydroxycholecalciferol.In D.H. Copp and R.V. Talmage (eds.): Endocrinology of Calcium Metabolism, p. 371. Excerpta Medica, Amsterdam, 1978Google Scholar
  16. 16.
    Chen, P.S., Jr., Bosmann H.B.: Comparison of the hypercalcemic action of vitamins D2 and D3 in chicks and the effect on tetracycline fixation by bone. J. Nutr.87:148–154, 1965PubMedGoogle Scholar
  17. 17.
    Chen, P.S., Jr., Terepka, A. R., Overslaugh, C.: Hypercalcemic and hypophosphatemic actions of dihydrotachysterol, vitamin D2 and Hytakerol (AT-10) in rats and in dogs, Endocrinology70: 815–821, 1962PubMedGoogle Scholar
  18. 18.
    Hass, G. M., Trueheart R.E., Taylor, C.B., Stumpe, M.: An experimental study of hypervitaminosis D. Am. J. Pathol.34:395 1958PubMedGoogle Scholar
  19. 19.
    Baginski, E.S., Foà, P.P., Zak, B.: Microdetermination of inorganic phosphate, phospholipids and total phosphate in biological material, Clin. Chem.13:326–332, 1967PubMedGoogle Scholar
  20. 20.
    Ichida, T., Hine, N.: Improvement of Baginski's method for phosphorus determination, Clin. Chim. Acta23:378–379, 1969PubMedGoogle Scholar
  21. 21.
    Wasserman, R.H., Corradino, R.A., Taylor, A.N.: Vitamin D-dependent calcium binding protein. J. Biol. Chem.243:3978–3986 (1968)PubMedGoogle Scholar
  22. 22.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent J. Biol. Chem.193:265–275, 1951PubMedGoogle Scholar
  23. 23.
    Fullmer, H.M., Link, C.C.: A demineralization procedure for enzymatic histochemical use: A quantitative succinic dehydrogenase assay, Stain Technol.39:387–396, 1964PubMedGoogle Scholar
  24. 24.
    Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy J. Cell Biol.27:137A-138A, 1965Google Scholar
  25. 25.
    Romanoff, A.L.: The Avian Embryo, Structural and Functional Development, pp. 1072–1077. The Macmillan Company, New York, 1960Google Scholar
  26. 26.
    Tuan, R.S., Scott, W.A.: Calcium-binding protein of chorioallantoic membrane: Identification and developmental expression, Proc. Natl. Acad. Sci. U.S.A.74:1946–1949, 1977PubMedGoogle Scholar
  27. 27.
    Crooks, J.R., Kyriakides, C.P.M., Simkiss, K.: Routes of calcium movement across the chick chorioallantois. Q. J. Exp. Physiol.61:265–274, 1976Google Scholar
  28. 28.
    Capen, C.C., Henry, H.L., Norman, A.W.: Fine structural alterations produced by 1,25-dihydroxycholecalciferol (alone and combination) and cholecalciferol on the chick parathyroid gland. In D.H. Copp and R.V. Talmage (eds.): Endocrinology of Calcium Metabolism, p. 367, Excerpta Medica, Amsterdam 1978Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Roberto Narbaitz
    • 1
  • Susan Tolnai
    • 1
  1. 1.Department of Anatomy, Faculty of MedicineUniversity of OttawaOttawaCanada

Personalised recommendations