Calcified Tissue Research

, Volume 26, Issue 1, pp 127–137 | Cite as

Biological calcium phosphates and their role in the physiology of bone and dental tissues I. Composition and solubility of calcium phosphates

  • F. C. M. Driessens
  • J. W. E. van Dijk
  • J. M. P. M. Borggreven
Laboratory Investigations


Variations in the composition of bone and tooth mineral are consistent with the model that the constituents are a mixed microcrystalline apatite (AP)-octocalcium phosphate (OCP) like phase and an amorphous or submicrocrystalline calcium phosphate (ACP) like phase whereby these phases can occur in different proportions. An appropriate model for a description of the variable composition and the solubility behavior of the apatite phase is given by the formula
$$\begin{array}{*{20}c} {\begin{array}{*{20}c} {Ca_{5 - x - y - u} Na_{\frac{2}{3} y} } \\ {\{ (PO_4 )_{3 - x - y } (CO)_{x + y} \} (H_2 O)_{y + z} OH_{1 - x - \frac{1}{3} y - 2u} } \\\end{array}} \\\end{array}$$
in which the compositional parameters x, y, z, and u each account for one type of defect mechanism. Other point defects are formed as well by incorporation of minority amounts of ions such as Cl, K+, and F; a number of trace elements can substitute for Ca2+ ions under in vivo conditions. It is suggested that the incorporation of ions in or loss from the crystals in contact with aqueous solutions is reversible. Literature data are used to show the direction in which the solubility product of the apatite phase shifts by incorporation of the different physiologically relevant ions. A quantitative evaluation of the available literature data revealed that Na+ and CO3= incorporation is the main cause for shifts in the solubility product of biological apatites.

Key words

Calcium phosphates Composition Dissolution Precipitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pautard, F.G.E.: The structure and genesis of calcium phosphates in vertebrates and invertebrates. In: Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 93–100. CNRS, Paris, 1975Google Scholar
  2. 2.
    Dallemagne, M.J., Richelle, L.J.: Inorganic chemistry of bone. In I. Zipkin (ed.): Biological Mineralization, p. 23. John Wiley, New York, 1973Google Scholar
  3. 3.
    Brown, W.E., Smith, J.P., Lehr, J.R., Frazier, A.W.: Octacalcium phosphate and hydroxyapatite, Nature196:1048–1055, 1962Google Scholar
  4. 4.
    Patel, P.R., Brown, W.E.: Thermodynamic solubility product of human tooth enamel: powdered sample, J. Dent. Res.54:(4):728–736, 1975PubMedGoogle Scholar
  5. 5.
    Neuman, W.F., Neuman, M.W.: Chemical Dynamics of Bone Mineral. University of Chicago Press, Chicago, 1958Google Scholar
  6. 6.
    Biltz, R.M., Pellegrino, E.D.: A comparative study of bone composition in sixteen vertebrates, J. Bone Joint Surg.51A:456–466, 1969Google Scholar
  7. 7.
    Agna, J. A., Knowles, H.C., Alverson, G.: The mineral content of normal human bone, J. Clin. Invest.37:1357–1361, 1958PubMedGoogle Scholar
  8. 8.
    Armstrong, W.D.: Composition and constitution of the mineral phase of bone, Clin. Orthop.38:179–190, 1965PubMedGoogle Scholar
  9. 9.
    Derise, N.L., Ritchey, S.J., Furr, A.K.: Mineral composition of normal human enamel and dentin and the relation of composition to dental caries, J. Dent. Res.53:847–852, 1974PubMedGoogle Scholar
  10. 10.
    Follis, R.H.: The inorganic composition of the human rib with and without marrow elements, J. Biol. Chem.194:223–226, 1952PubMedGoogle Scholar
  11. 11.
    Harmon, B.G., Simon, J., Becker, D.E., Jensen, A.J., Baker, D.H.: Effect of source and level of dietary phosphorous on structure and composition of turbinate and long bones, J. Anim. Sci.30:742–747, 1970PubMedGoogle Scholar
  12. 12.
    Zipkin, I.: The inorganic composition of bones and teeth. In H. Schraer (ed.): Biological Calcification, p. 69. North-Holland Publishing Co., Amsterdam, 1970Google Scholar
  13. 13.
    Brown, W.E.: Crystal chemistry of calcium phosphates, Proc. Can. Sugar Refining Res. 26–34, 1964Google Scholar
  14. 14.
    Suzuki, M.: Studies on the physicochemical nature of hard tissue. In: Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 77–83. CNRS, Paris, 1975Google Scholar
  15. 15.
    Bonel, G., Labarthe, J.C., Vignoles, C.: Contribution a l'étude structurale des apatites carbonatées de type B. In: Physicochimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 117–125. CNRS, Paris, 1975Google Scholar
  16. 16.
    Young, R.A.: Some aspects of crystal structural modeling of biological apatites. In: Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 21–40. CNRS, Paris, 1975Google Scholar
  17. 17.
    LeGeros, R.Z., Trautz, O.R., Le Geros, J.P., Klein, E.: Carbonate substitution in the apatite structure, Bull. Soc. Chim. Fr. 1712–1718, 1968Google Scholar
  18. 18.
    Baud, C.A., Very, J.M.: Ionic substitutions in vivo in bone and tooth apatite crystals. In: Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 405–410. CNRS, Paris, 1975Google Scholar
  19. 19.
    Hayek, E., Link, H.: Hydrogen phosphate and carbonate in synthetic calcium phosphates and in the bone mineral. In: Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 101–104. CNRS, Paris, 1975Google Scholar
  20. 20.
    Heughebaert, J.C., Montel, G.: Sur la transformation des phosphates amorphes et phosphates apatitiques par réaction intracristalline. In: Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 283–293. CNRS, Paris, 1975Google Scholar
  21. 21.
    LeGeros, R.Z., Shirra, W.P., Mirarite, M.A., LeGeros, J.P.: Amorphous calcium phosphates: synthetic and biological. In: Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 105–115. CNRS, Paris, 1975Google Scholar
  22. 22.
    Furedi-Milhofer, H., Bilinski, H., Breceric, L., Despotovic, R., Filipovic-Vincekovic, N., Oljica, E., Purgatic, B.: The formation of calcium phosphate precipitates: metastable equilibria and kinetics. In: Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 303–310. CNRS, Paris, 1975Google Scholar
  23. 23.
    Dickens, B., Schröder, L.W., Brown, W.E.: Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3 (PO4)2, J. Solid State Chem.10:232–248, 1974Google Scholar
  24. 24.
    Hayek, E., Newesely, H.: The existence of tricalcium phosphate in aqueous solution, Monatschr. Chem.89:88–95, 1958Google Scholar
  25. 25.
    Eanes, E.D., Termine, J.D., Posner, A.S.: Amorphous calcium phosphate in skeletal tissues, Clin. Orthop.53:223–235, 1967PubMedGoogle Scholar
  26. 26.
    Termine, J.D., Eanes, E.D., Greenfield, D.J., Nylen, M.U.: Hydrazine-deproteinated bone mineral: physical and chemical properties, Calcif. Tissue Res.12:73–90, 1973PubMedGoogle Scholar
  27. 27.
    Lonsdale, K.: Epitaxy as a growth factor in urinary calculi and gallstones, Nature217:56–58, 1968PubMedGoogle Scholar
  28. 28.
    Newesely, H.: Epitaxy problems in biocrystalline ultra textures. In: Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 203–209. CNRS, Paris, 1975Google Scholar
  29. 29.
    Berry, L.G. (ed.): Inorganic index to the powder diffraction file 1971, Joint Committee on Powder Diffraction Standards, Swarthmore, Pa., 1971Google Scholar
  30. 30.
    Francis, M.D., Webb, N.C.: Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor, Calcif. Tissue Res.6:335–342, 1971PubMedGoogle Scholar
  31. 31.
    Arends, J., Davidson, C.L.: HPO42− content in enamel and artificial carious lesions, Calcif. Tissue Res.18:65–79, 1975PubMedGoogle Scholar
  32. 32.
    Brown, W.E., Patel, P.R., Chow, L.C.: Formation of CaHPO4·2H2O from enamel mineral and its relationship to caries mechanism, J. Dent. Res.54(3):475–481, 1975PubMedGoogle Scholar
  33. 33.
    Montel, G.: Conceptions actuelles sur la structure et la constitution des apatites synthétiques comparables aux apatites biologiques. In: Physico-Chimie et Crystallographie des Apatites d'Intérêt Biologiques, pp. 13–18. CNRS, Paris, 1975Google Scholar
  34. 34.
    Widdowson, E.M., McCance, R.A.: Effect of food and growth on metabolism of phosphorus in newly born, Acta Paediatr. Scand.48:383–387, 1959Google Scholar
  35. 35.
    Driessens, F.C.M.: Thermodynamics and defect chemistry of some oxide solid solutions, I and II, Ber. Bunsenges. Phys. Chem.72:754–773, 1968Google Scholar
  36. 36.
    Driessens, F.C.M.: Thermodynamics and defect chemistry of some oxide solid solutions, III, Ber. Bunsenges. Phys. Chem.72:1123–1133, 1968Google Scholar
  37. 37.
    Grøn, P.: Saturation of human saliva with calcium phosphates, Arch. Oral Biol.18:1385–1392, 1973PubMedGoogle Scholar
  38. 38.
    Borggreven, J.M.P.M., van Dijk, J.W.E., Driessens, F.C.M.: The behaviour of dental enamel as a porous membrane; fixed charge of dental enamel and relation to carious breakdown, IADR-Abstracts 1, 2. J. Dent. Res.55:D151, 1976Google Scholar
  39. 39.
    den Hartog, H., Welch, D.O., Royce, B.S.H.: Diffusion of calcium, phosphate and OD-ions in fluorapatite, Phys. Stat. Solid.B53:201–212, 1972Google Scholar
  40. 40.
    McCann, H.G.: The solubility of fluorapatite and its relationship to that of calcium fluoride, Arch. Oral Biol.13:987–1001, 1968PubMedGoogle Scholar
  41. 41.
    Amberg, C.H., Luk, H.C., Wagstaff, K.P.: The fluoridation of nonstoichiometric calcium hydroxyapatite: an infrared study, Can. J. Chem.52:4001–4006, 1974Google Scholar
  42. 42.
    Chikerur, N.S., Chiranjeevi Rao, S.V.: Some aspects of uptake of lead by calcium hydroxylapatite, Ind. J. Chem.12:523, 1974Google Scholar
  43. 43.
    Dedhiya, M.G., Young, F., Higuchi, W.I.: Mechanism for the retardation of the acid dissolution rate of hydroxyapatite by strontium, J. Dent. Res.52:1097–1109, 1973PubMedGoogle Scholar
  44. 44.
    Labarthe, J.C., Bonel, G., Montel, G.: Sur la structure et les propriétés des apatites carbonatées de type B phosphocalciques, Ann. Chim. (Paris),8:289–301, 1973Google Scholar
  45. 45.
    Moreno, E.C., Kresak, M., Zahradnik, R.T.: Solubility of fluoridated hydroxyapatites, IADR Abstracts, p. 439, 1973Google Scholar
  46. 46.
    Narasaraju, T.S.B.: pH-dependence of solubilities of solid solutions of hydroxyapatite and fluorapatite, Ind. J. Chem.10:308–309, 1972Google Scholar
  47. 47.
    Neuman, W.F., Mulryan, B.J.: Synthetic hydroxyapatite crystals: IV. Magnesium incorporation, Calcif. Tissue Res.7:133–138, 1971PubMedGoogle Scholar
  48. 48.
    Simpson, D.R.: Substitution in apatite: II, Low-Temperature fluoride-hydroxylapatite, Am. Mineralogist53:1953–1964, 1968Google Scholar
  49. 49.
    Zahradnik, R., Rericha, R., Axamit, P., Rezabkova, M., Shramovsky, S.: Über die Reaktion einiger Kationen von Schwermetallen mit wenig löslichen Calciumverbindungen, Coll. Czech. Chem. Commun.25:146–157, 1960Google Scholar
  50. 50.
    Johansen, E.: Comparison of the ultrastructure and chemical composition of sound and carious enamel from human permanent teeth. In: M.V. Stack and R.W. Fearnhead (eds.): Tooth enamel, p. 177. J. Wright and Sons, Bristol, 1965Google Scholar
  51. 51.
    Suga, S.: Fluorine distribution in sound, carious and developing teeth, revealed by electron microprobe analysis. In G. Shinoda, K. Kohra, and T. Ichinokawa (eds.): Proc. VIth Int. Conf. X-ray Optics and Microanalysis, pp. 847–852. University of Tokyo Press, Tokyo, 1972Google Scholar
  52. 52.
    Weatherell, J.A., Robinson, C.: The inorganic composition of teeth. In I. Zipkin (ed.): Biological Mineralization, pp. 43–74. John Wiley, New York, 1973Google Scholar
  53. 53.
    Chien, S.: Ion-Activity Products of Some Apatite Minerals. University Microfilms, Ann Arbor, Mich., 1972Google Scholar
  54. 54.
    Chuong, R.: Experimental study of surface and lattice effects on the solubility of hydroxyapatite, J. Dent. Res.52:911–914, 1973PubMedGoogle Scholar
  55. 55.
    Driessens, F.C.M.: Fluoride incorporation and apatite solubility, Caries Res.7:297–314, 1973PubMedGoogle Scholar
  56. 56.
    Moreno, E.C., Gregory, T.M., Brown, W.E.: Preparation and solubility of hydroxyapatite, J. Res. NBS72A:773–782, 1968Google Scholar
  57. 57.
    Biltz, R.M., Pellegrino, E.D., Miller, S.T., Moffit, A.: solubility behaviour of the mineral substance of bone, tooth and shell, Clin. Orthop.71:219–228, 1970PubMedGoogle Scholar
  58. 58.
    MacGregor, J.: Some observations on the nature of bone mineral. In: H. Fleisch, H.J.J. Blackwood, and M. Owen (eds.): Calcified Tissues pp. 138–142, Springer-Verlag, Berlin, 1966Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • F. C. M. Driessens
    • 1
  • J. W. E. van Dijk
    • 1
  • J. M. P. M. Borggreven
    • 1
  1. 1.Institute of Dental Materials and Laboratory for Oral BiochemistryCatholic University, Subfaculty of DentistryNijmegenThe Netherlands

Personalised recommendations