Skip to main content
Log in

Clinical importance of inducible beta-lactamases in gram-negative bacteria

  • Review
  • Current Topic Inducible Beta-Lactamases: Enzymes of Increasing Clinical Importance
  • Published:
European Journal of Clinical Microbiology Aims and scope Submit manuscript

Abstract

The clinical problems caused by inducible beta-lactamases in certain gram-negative bacteria are being recognized with increasing frequency. These problems include the rapid emergence of multiple beta-lactam resistance during therapy with many of the newer beta-lactam antibiotics. Such multiply resistant organisms are now spreading within the hospital and have become important nosocomial pathogens. This has been a particularly difficult problem for intensive care units, cystic fibrosis centers and burn units where there are clusters of patients who are highly susceptible to infections with organisms likeEnterobacter spp.,Serratia spp. andPseudomonas aeruginosa, which possess inducible beta-lactamases. Only through an awareness of these problems, their cause, and restriction of the use of certain newer betalactam antibiotics can these problems be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richmond, M. H., Sykes, R. B.: The beta-lactamases of gram-negative bacteria and their possible physiological role. Advances in Microbial Physiology 1973, 9: 31–88.

    PubMed  Google Scholar 

  2. Gootz, T. D., Jackson, D. B., Sherris, J. C.: Development of resistance to cephalosporins in clinical strains ofCitrobacter spp. Antimicrobial Agents and Chemotherapy 1984, 25: 591–595.

    PubMed  Google Scholar 

  3. Gootz, T. D., Sanders, C. C., Goering, R. V.: Resistance to cefamandole: derepression of beta-lactamases by cefoxitin and mutation inEnterobacter cloacae. Journal of Infectious Diseases 1982, 146: 34–42.

    PubMed  Google Scholar 

  4. Lampe, M. F., Allan, B. J., Minshew, B. H., Sherris, J. C.: Mutational enzymatic resistance ofEnterobacter species to beta-lactam antibiotics. Antimicrobial Agents and Chemotherapy 1982, 21: 655–660.

    PubMed  Google Scholar 

  5. Livermore, D. M., Williams, R. J., Lindridge, M. A., Slack, R. C. B., Williams, J. D.: Pseudomonas aeruginosa isolates with modified beta-lactamase inducibility: effects on beta-lactam sensitivity. Lancet 1982, i: 1466–1467.

    Google Scholar 

  6. Sanders, C. C., Sanders, W. E. Jr.: Microbial resistance to newer generation beta-lactam antibiotics: clinical and laboratory implications. Journal of Infectious Diseases 1985, 151: 399–406.

    PubMed  Google Scholar 

  7. Livermore, D. M.: Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods. European Journal of Clinical Microbiology 1987, 6: 439–445.

    PubMed  Google Scholar 

  8. Sanders, C. C., Sanders, W. E. Jr.: Type I beta-lactamases of gram-negative bacteria: interactions with beta-lactam antibiotics. Journal of Infectious Diseases 1986, 154: 792–800.

    PubMed  Google Scholar 

  9. Then, R. L.: Ability of newer beta-lactam antibiotics to induce beta-lactamase production inEnterobacter cloacae. European Journal of Clinical Microbiology 1987, 6: 451–455.

    PubMed  Google Scholar 

  10. Cullmann, W., Buscher, K. H., Dick, W.: Selection and properties ofPseudomonas aeruginosa variants resistant to beta-lactam antibiotics. European Journal of Clinical Microbiology 1987, 6: 467–473.

    PubMed  Google Scholar 

  11. European Study Group on Antibiotic Resistance: Incidence of inducible beta-lactamases in gram-negative septicemia isolates from twenty-nine laboratories. European Journal of Clinical Microbiology 1987, 6: 460–466.

    Google Scholar 

  12. Tausk, F., Stratton, C. W.: Beta-lactamase alteration of beta-lactam inhibitory zones. European Journal of Clinical Microbiology 1987, 6: 474–476.

    PubMed  Google Scholar 

  13. Chandler, S. W., Nolte, F. S.: Evaluation of disk approximation and agar dilution induction tests for demonstration of in vitro antagonism of cefotaxime by cefoxitin inEnterobacter species. European Journal of Clinical Microbiology 1987, 6: 476–478.

    PubMed  Google Scholar 

  14. Gutmann, L., Williamson, R.: A model system to demonstrate that beta-lactamase-associated antibiotic trapping could be a potential means of resistance. Journal of Infectious Diseases 1983, 148: 316–321.

    PubMed  Google Scholar 

  15. Seeberg, A. H., Tolxdorff-Neutzling, R. M., Wiedemann, B.: Chromosomal beta-lactamases ofEnterobacter cloacae are responsible for resistance to third-generation cephalosporins. Antimicrobial Agents and Chemotherapy 1983, 23: 918–925.

    PubMed  Google Scholar 

  16. Then, R. L., Angehrn, P.: Trapping of nonhydrolyzable cephalosporinases inEnterobacter cloacae andPseudomonas aeruginosa as a possible resistance mechanism. Antimicrobial Agents and Chemotherapy 1982, 21: 711–717.

    PubMed  Google Scholar 

  17. Vu, H., Nikaido, H.: Role of beta-lactam hydrolysis in the mechanisms of resistance of a beta-lactamase-constitutiveEnterobacter cloacae strain to expanded-spectrum beta-lactams. Antimicrobial Agents and Chemotherapy 1985, 27: 393–398.

    PubMed  Google Scholar 

  18. Werner, V., Sanders, C. C., Sanders, W. E. Jr., Goering, R. V.: Role of beta-lactamases and outer membrane proteins in multiple beta-lactam resistance ofEnterobacter cloacae. Antimicrobial Agents and Chemotherapy 1985, 27: 455–459.

    PubMed  Google Scholar 

  19. Phelps, D. G., Carlton, D. D., Farrell, C. A., Kessler, R. E.: Affinity of cephalosporins for beta-lactamases as a factor in antibacterial efficacy. Antimicrobial Agents and Chemotherapy 1986, 29: 845–848.

    PubMed  Google Scholar 

  20. Collatz, E-, Gutmann, L., Williamson, R., Acar, J. F.: Development of resistance to beta-lactam antibiotics with special reference to third-generation cephalosporins. Journal of Antimicrobial Chemotherapy 1984, 14, Supplement: 13–21.

    PubMed  Google Scholar 

  21. Weinstein, R. A.: Occurrence of cefotaxime-resistantEnterobacter during therapy of cardiac surgery patients. Chemoterapia 1985, 4: 110–112.

    Google Scholar 

  22. Mall, T., Follath, F., Salfinger, M., Ritz, R., Reber, H.: Moxalactam in nosocomial infections withSerratia marcescens. Intensive Care Medicine 1985, 11: 179–183.

    PubMed  Google Scholar 

  23. Follath, F., Costa, E., Thommen, A., Frei, R., Burdeska, A., Meyer, J.: Clinical consequences of development of resistance to third-generation cephalosporins. European Journal of Clinical Microbiology 1987, 6: 446–450.

    PubMed  Google Scholar 

  24. Dworzack, D. L., Pugsley, M. P., Sanders, C. C., Horowitz, E. A.: Emergence of resistance in gram-negative bacteria during therapy with expanded-spectrum cephalosporins. European Journal of Clinical Microbiology 1987, 6: 456–459.

    PubMed  Google Scholar 

  25. Winston, D. J., Barnes, R. C., Ho, W. G., Young, L. S., Champlin, R. E., Gale, R. P.: Moxalactam plus piperacillin versus moxalactam plus amikacin in febrile granulocytopenic patients. American Journal of Medicine 1984, 77: 442–450.

    PubMed  Google Scholar 

  26. Nichols, L., Gudmundsson, S., Maki, D. G.: Experience with cefsulodin therapy of lower respiratory tract infections caused byPseudomonas aeruginosa in adults without cystic fibrosis or granulocytopenia. Reviews of Infectious Diseases 1983, 6, Supplement 3: S711-S720.

    Google Scholar 

  27. Winston, D. J., Busuttil, R. W., Kurtz, T. O., Young, L. S.: Moxalactam therapy for bacterial infections. Archives of Internal Medicine 1981, 141: 1607–1612.

    PubMed  Google Scholar 

  28. Haley, R. W., Culver, D. H., White, J. W., Morgan, W. M., Emoti, T. G.: The nationwide nosocomial infection rate: a new need for vital statistics. American Journal of Epidemiology 1985, 121: 159–167.

    PubMed  Google Scholar 

  29. Centers of Disease Control: Nosocomial infection surveillance, 1983. In: CDC Surveillance Summaries 1984, 33 (No. 2SS): 9SS-21SS.

    Google Scholar 

  30. Pedersen, S. S., Koch, C., Hoiby, N., Rosendal, K.: An epidemic spread of multiresistantPseudomonas aeruginosa in a cystic fibrosis centre. Journal of Antimicrobial Chemotherapy 1986, 17: 505–516.

    PubMed  Google Scholar 

  31. Bryan, C. S., John, J. F. Jr., Pai, S., Austin, T. L.: Gentamicin vs cefotaxime for therapy of neonatal sepsis. American Journal of Diseases of Children 1985, 139: 1086–1089.

    PubMed  Google Scholar 

  32. Benn, R. A. V., Kemp, R. J.: Effect of antibiotic use on the incidence of cephalosporin resistance in two Australian hospitals. Journal of Antimicrobial Chemotherapy 1984, 14, Supplement B: 71–76.

    Google Scholar 

  33. Jarlier, V., Bismuth, R., Nicolas, M. H., Nguyen, J., Truffot, C., Grosset, J.: Survey of the phenotypes of susceptibility to beta-lactams inEnterobacteriaceae at the Pitie-Salpetriere Hospital. Journal of Antimicrobial Chemotherapy 1984, 14, Supplement B: 59–65.

    Google Scholar 

  34. Sanders, C. C.: Failure to detect resistance in antimicrobial susceptibility tests: a “very major” error of increasing concern. Antimicrobic Newsletter 1984, 1: 27–31.

    Google Scholar 

  35. Stone, L. L., Jungkind, D. L.: False-susceptible results from the MS-2 system used for testing resistantPseudomonas aeruginosa against two third-generation cephalosporins, moxalactam and cefotaxime. Journal of Clinical Microbiology 1983, 18: 389–394.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, C.C., Sanders, W.E. Clinical importance of inducible beta-lactamases in gram-negative bacteria. Eur. J, Clin. Microbiol. 6, 435–438 (1987). https://doi.org/10.1007/BF02013106

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02013106

Keywords

Navigation