Advertisement

Calcified Tissue Research

, Volume 23, Issue 1, pp 33–38 | Cite as

Cathepsind activity in isolated odontoblasts

  • A. Linde
  • B. Persliden
Article

Summary

The presence of an acid proteinase with a high activity has been demonstrated in isolated odontoblast-predentine material from dentinogenically active rat incisors. The enzyme was identified as cathepsind (EC 3.4.23.5). The possible significance of the enzymatic degradation of proteoglycans and glycosaminoglycans in the course of the calcification process is discussed.

Key words

Cathepsind Calcification Odontoblasts Dentinogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anson, ML.: The estimation of cathepsin with hemoglobin and the partial purification of cathepsin. J. gen. Physiol.20, 565–574 (1937)CrossRefGoogle Scholar
  2. Barrett, A.J.: Properties of lysosomal enzymes. In: Lysosomes in biology and pathology, Vol. 2 (Dingle, J.T., Fell, H.B., eds.), pp. 245–312. Amsterdam: North-Holland Publishing Co. 1969Google Scholar
  3. Barrett, A.J.: Purification and properties of cathepsin D from liver of chicken, rabbit and man. In: Tissue proteinases (Barrett, A.J., Dingle, J.T., eds.), pp. 109–128. Amsterdam: North-Holland Publishing Co. 1971Google Scholar
  4. Barrett, A.J., Dingle, J.T.: Tissue proteinases, p. 154. Amsterdam: North-Holland 1971Google Scholar
  5. Barrett, A.J., Dingle, J.T.: The inhibition of tissue acid proteinases by pepstatin. Biochem. J.127, 439–441 (1972)PubMedGoogle Scholar
  6. Baylink, D., Wergedal, J., Thompson, E.: Loss of proteinpoly-saccharides at sites where bone mineralization is initiated. J. Histochem. Cytochem.20, 279–292 (1972)PubMedGoogle Scholar
  7. Campo, R.D., Dziewiatkowski, D.D.: Turnover of the organic matrix of cartilage and bone as visualized by autoradiography. J. Cell Biol.18, 19–29 (1963)CrossRefPubMedGoogle Scholar
  8. Dingle, J.T., Barrett, A.J., Weston, P.D.: Cathepsin D. Characteristics of immunoinhibition and the confirmation of a role in cartilage breakdown. Biochem. J.123, 1–13 (1971)PubMedGoogle Scholar
  9. Dingle, J.T., Barrett, A.J., Poole, A.R.: Inhibition of pepstatin of human cartilage degradation. Biochem. J.127, 443–444 (1972)PubMedGoogle Scholar
  10. Dunstone, J.R.: Ion-exchange reactions between acid mucopoly-saccharides and various cations. Biochem. J.85, 336–351 (1962)Google Scholar
  11. Engfeldt, B., Hjerpe, A.: Glycosaminoglycans of dentine and predentine. Calcif. Tiss. Res.10, 152–159 (1972)Google Scholar
  12. Engström, C., Linde, A., Persliden, B.: A fluorimetric study of β-glucuronidase and β-acetylgalactosaminidase from the pulp of the rat incisor. Arch. oral Biol.17, 1421–1430 (1972)CrossRefPubMedGoogle Scholar
  13. Glimcher, M.J.: Molecular biology of mineralized tissues with particular reference to bone. Rev. Mod. Physics31, 388–391 (1959)Google Scholar
  14. Hirschman, A., Dziewiatkowski, D.D.: Protein-polysaccharide loss during endochondral ossification: immuno-chemical evidence. Science154, 393–395 (1966)PubMedGoogle Scholar
  15. Höhling, H.J., Nicholson, W.A.P., Schreiber, J., Zessack, U., Boyde, A.: The distribution of some elements in predentine and dentine of rat incisors. Naturwissenschaften59, 423 (1972)CrossRefPubMedGoogle Scholar
  16. Jibril, A.O.: Proteolytic degradation of ossifying cartilage matrix and the removal of acid mucopolysaccharides prior to bone formation. Biochim. biophys. Acta (Amst.)136, 162–165 (1967)Google Scholar
  17. Kennedy, J.S., Kennedy, G.D.C.: Sulphated mucopolysaccharides in rodent teeth. J. Anat. (Lond.)91, 398–408 (1957)Google Scholar
  18. Lapresle, C.: Rabbit cathepsins D and E. In: Tissue proteinases (Barrett, A.J., Dingle, J.T., eds.), pp. 135–150. Amsterdam: North-Holland Publishing Co. 1971Google Scholar
  19. Linde, A.: A method for the biochemical study of enzymes in the rat odontoblast layer during dentinogenesis. Arch. oral Biol.17, 1209–1212 (1972)CrossRefPubMedGoogle Scholar
  20. Linde, A.: Glycosaminoglycans of the odontoblast-predentine layer in dentinogenically active porcine teeth. Calc. Tiss. Res.12, 281–294 (1973a)CrossRefGoogle Scholar
  21. Linde, A.: Glycosaminoglycans of the dental pulp. A biochemical study. Scand. J. dent. Res.81, 177–201 (1973b)PubMedGoogle Scholar
  22. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurements with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951)PubMedGoogle Scholar
  23. Matthiessen, M.E.: Comparative histochemical studies on the development of teeth in man and in the mouse. Acta anat. (Basel)70, 14–25 (1968)Google Scholar
  24. Misaka, E., Tappel, A.L.: Inhibition studies of cathepsins A, B, C and D from rat liver lysosomes. Comp. Biochem. Physiol.38B, 651–662 (1971)Google Scholar
  25. Öbrink, B.: The influence of glycosaminoglycans on the formation of fibers from monomeric tropocollagen in vitro. Eur. J. Biochem.34, 129–137 (1973)CrossRefPubMedGoogle Scholar
  26. Poole, A.R., Hembry, R.M., Dingle, J.T.: Extracellular localization of cathepsind in ossifying cartilage. Calcif. Tiss. Res.12, 313–321 (1973)CrossRefGoogle Scholar
  27. Press, E.M., Porter, R.R., Cebra, J.: The isolation and properties of a proteolytic enzyme, cathepsind, from bovin spleen. Biochem. J.74, 501–514 (1960)PubMedGoogle Scholar
  28. Pugliarello, M.C., Vittur, F., De Bernard, B., Bonucci, E., Ascenzi, A.: Chemical modifications in osteones during calcification. Calcif. Tiss. Res.5, 108–114 (1970)CrossRefGoogle Scholar
  29. Quintarelli, G., Dellovo, M.C., Mucopolysaccharide histochemistry of rat tooth germs. Histochemie3, 195–207 (1963)CrossRefGoogle Scholar
  30. Sakamoto, S., Sasaki, S.: Changes in catheptic activity in the enamel organ of the bovine tooth germ during development. Arch. oral Biol.14, 987–990 (1969)CrossRefPubMedGoogle Scholar
  31. Schwabe, C., Kalnitsky, G.: A peptidohydrolase from mammalian fibroblasts (Bovine dental pulp). Biochemistry5, 158–168 (1966)CrossRefPubMedGoogle Scholar
  32. Sobel, A.E.: Local factors in the mechanism of calcification. Ann. N.Y. Acad. Sci.60, 713–731 (1955)PubMedGoogle Scholar
  33. Sundström, B.: New aspects on the utilization of inorganic sulphate during dentine formation. Histochemie26, 61–66 (1971)CrossRefPubMedGoogle Scholar
  34. Umezawa, H., Aoyagi, T, Morishima, H., Matsuzaki, M., Hamada, M., Takeutchi, T.: Pepstatin, a new pepsin inhibitor produced by actinomycetes. J. Antibiot. (Tokyo)23, 259–262 (1970)Google Scholar
  35. Vaes, G., Jacques, P.: Studies on bone enzymes. The assay of acid hydrolases and other enzymes in bone tissue. Biochem. J.97, 380–388 (1965)Google Scholar
  36. Willstätter, R., Bamann, W.: Über die Proteasen der Magenschleimhaut. Erst Abhandlung über die Enzyme der Leukocyten. Hoppe-Seylers Z. physiol. Chem.180, 127–143 (1929)Google Scholar
  37. Woessner, J.F.: Pepstatin inhibits the digestion of hemoglobin and protein-polysaccharide complex by cathepsind. Biochem. biophys. Res. Commun.47, 965–970 (1972)CrossRefPubMedGoogle Scholar
  38. Woessner, J.F.: Purification of cathepsind from cartilage and uterus and its action on the protein-polysaccharide complex of cartilage. J. biol. Chem.248, 1634–1642 (1973)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • A. Linde
    • 1
  • B. Persliden
    • 1
  1. 1.Laboratory of Oral Biology, Department of HistologyUniversity of Gothenburg, FackGothenburgSweden

Personalised recommendations