Microbial Ecology

, Volume 15, Issue 3, pp 293–309 | Cite as

Short-term variations of bacterioplankton in Antarctic zone: Terre Adelie area

  • D. Delille
  • M. Bouvy
  • G. Cahet


Previous studies on Antarctic seawater have demonstrated the presence of significant numbers of bacteria, but their in situ activity has not been demonstrated. In order to demonstrate this hypothetical activity, a scheduled survey was conducted from January to February 1986 in a coastal area of Adelie Land. Seawater samples were collected in a selected station every day or every hour during a 17 hour period. Bacterial communities in each sample were studied by measuring direct and viable counts, frequency of dividing cells estimation, taxonomic analysis, and heterotrophic potential. Complementary studies used batch cultures with artificial nutrient supplements. The results clearly suggest a strong potential activity of the natural Antarctic bacterial microflora.


Bacterial Community Coastal Area Nature Conservation Batch Culture Nutrient Supplement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azam F, Fenchel T, Field G, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263Google Scholar
  2. 2.
    Baleux B (1977) A computer study of the evolution of aerobic bacterial populations in sewage and river waters. Microb Ecol 4:53–65CrossRefGoogle Scholar
  3. 3.
    Bauerfeind S (1985) Degradation of phytoplankton detritus by bacteria: estimation of bacterial consumption and respiration in an oxygen chamber. Mar Ecol Prog Ser 21:27–36Google Scholar
  4. 4.
    Baxter M, Sieburth JMcN (1984) Metabolic and ultrastructural response to glucose of two eurytrophic bacteria isolated from seawater at different enriching concentrations. Appl Environ Microbiol 47:31–38PubMedGoogle Scholar
  5. 5.
    Bölter M, Dawson R (1982) Heterotrophic utilisation of biochemical compounds in antarctic waters. Neth J Sea Res 16:315–332CrossRefGoogle Scholar
  6. 6.
    Bouvy M, Le Romancer M, Delille D (1986) Significance of microheterotrophs in relation to the degradation process of subantarctic kelp beds (Macrocystis pyrifera). Polar Biol 5:249–253CrossRefGoogle Scholar
  7. 7.
    Cahet G, Delille D, Vaillant N (1986) Evolution à court terme des microflores utilisant les hydrocarbures en milieu subantarctique. Comparaison des systèmes d'incubation naturels et artificiels. 2nd Cong Inter Bact Mar, Brest, Octobre 1984, pp 655–662Google Scholar
  8. 8.
    Delille D (1985) Influence de la température sur les microflores bactériennes antarctiques et subantarctiques. Océanis 11:27–43Google Scholar
  9. 9.
    Delille D (1987) Spatial distribution of coastal Antarctic seawater bacteria: relationship with avifauna. Polar BiolGoogle Scholar
  10. 10.
    Delille D, Bouvy M (1986) Microflores sulfatoréductrices en milieu subantarctique. Relations avec quelques paramètres physicochimiques et biologiques (microflores totales et hétérotrophes). 2nd Cong Inter Bact Mar, Brest, Octobre 1984, pp 265–272Google Scholar
  11. 11.
    Delille D, Cahet G (1984) Croissance de populations hétérotrophes subantarctiques soumises à des enrichissements azotés. Effet des hydrocarbures. (Ed) CNRS Paris, Bact Mar May 1982, pp 213–219Google Scholar
  12. 12.
    Di Siervi MA, Mariazzi AA (1982) Uso de perfiles numericos para la identification de bacterias gram negativos de ambiantes lacustres. Limnobios 2:330–332Google Scholar
  13. 13.
    Ellis-Evans JC (1982) Seasonal activity in antarctic freshwater lake sediments. Polar Biol 1:129–140CrossRefGoogle Scholar
  14. 14.
    Fogg GE, Stewart WDP (1968) In situ determinations of biological nitrogen fixation in Antarctica. Br Antarc Surv Bull 15:39–46Google Scholar
  15. 15.
    Fuhrman JA, Azam F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California. Appl Environ Microbiol 39:1085–1095Google Scholar
  16. 16.
    Fuhrman JA, Eppley RW, Hagström A, Azam F (1985) Diel variations in bacterioplankton, phytoplankton, and related parameters in the Southern California Bight. Mar Ecol Prog Ser 27:9–10Google Scholar
  17. 17.
    Gillepsie PA, Monta RY, Jones LP (1976) The heterotrophic activity for amino-acids, glucose and acetate in antarctic waters. J Ocean Soc Japan 32:74–82Google Scholar
  18. 18.
    Griffiths RP, Hayasaka SS, McNamara TM, Morita RY (1977) Comparison between two methods of assaying relative microbial activity in marine environments. Appl Environ Microbiol 34:801–805PubMedGoogle Scholar
  19. 19.
    Hagström A, Larsson V, Horsted P, Normark S (1979) Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol 37:805–812Google Scholar
  20. 20.
    Hanson RB, Schafer D, Ryan T, Pope DH, Lowery HK (1983) Bacterioplankton in antarctic ocean waters during late austral winter: abundances, frequency of dividing cells, and estimates of production. Appl Environ Microbiol 45:1622–1632Google Scholar
  21. 21.
    Helmke E, Weyland H (1986) Effect of hydrostatic pressure and temperature on the activity and synthesis of chitinases of Antarctic ocean bacteria. Mar Biol 91:1–7CrossRefGoogle Scholar
  22. 22.
    Herbert RA, Bell CR (1974) Nutrient cycling in the antarctic marine environment. Br Antarct Surv Bull 39:7–11Google Scholar
  23. 23.
    Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228PubMedGoogle Scholar
  24. 24.
    Hodson RE, Azam F, Carlucci AF, Fuhrman JA, Karl DM, Holm-Hansen O (1981) Microbial uptake of dissolved organic matter in McMurdo Sound, Antarctica. Mar Biol 61:89–94CrossRefGoogle Scholar
  25. 25.
    Holm-Hansen O, Azam F, Carlucci AF, Hodson RE, Karl DM (1977) Microbial distribution and activity in and around McMurdo Sound. Antarct J US 12:29–32Google Scholar
  26. 26.
    Holm-Hansen O, Azam F, Campbell L, Carlucci AF, Karl DM (1978) Microbial life beneath the Ross Iceshelf. Antarct J of US 13:129–130Google Scholar
  27. 27.
    Horowitz A, Krichevsky MI, Atlas RM (1983) Characteristics and diversity of subarctic marine oligotrophic, stenoheterotrophic, and euryheterotrophic bacterial populations. Can J Microbiol 29:527–535Google Scholar
  28. 28.
    Iniss WE, Mayfield CI (1979) Seasonal variation of psychrophilic bacteria in sediment from Lake Ontario. Water Res 13:481–484CrossRefGoogle Scholar
  29. 29.
    Ishida Y, Eguchi M, Kadota H (1986) Existence of obligately oligotrophic bacteria as a dominant population in the South China Sea and the West Pacific Ocean. Mar Ecol Prog Ser 30:197–203Google Scholar
  30. 30.
    Jana BB, Patel GN, Roy SK, De UK (1980) Growth characteristics of the heterotrophic bacterial population of water and bottom sediments in tanks under different trophic conditions. Hydrobiol 75:231–239Google Scholar
  31. 31.
    Kogure K, Fukami K, Simidu U, Taga N (1986) Abundance and production of bacterioplankton in the Antarctic. Mem Natl Inst Polar Res, Spec Issue, 40:414–422Google Scholar
  32. 32.
    Laake M, Dahle AB, Hentzschel G (1983) Productivity and population diversity of marine organotrophic bacteria in enclosed planktonic ecosystems. Mar Ecol Prog Ser 14:59–69Google Scholar
  33. 33.
    Le Chevallier MW, Camero SC, McFeters GA (1983) New medium for improved recovery of coliform bacteria from drinking water. Appl Environ Microbiol 45:484–492Google Scholar
  34. 34.
    Marcussen B, Nielsen P, Jeppesen M (1984) Diel changes in bacterial activity determined by means of microautoradiography. Arch Hydrobiol Beih 19:141–149Google Scholar
  35. 35.
    Meyer-Reil LA, Bölter M, Liebezeit G, Schramm W (1979) Short term variations in microbiological and chemical parameters. Mar Ecol Prog Ser 1:1–6Google Scholar
  36. 36.
    Mikell AT, Parker BC, Simmons GM (1984) Responses of an antarctic lake heterotrophic community to high dissolved oxygen. Appl Environ Microbiol 47:1062–1066Google Scholar
  37. 37.
    Morita RY (1975) Psychrophilic bacteria. Bact Rev 39:144–167PubMedGoogle Scholar
  38. 38.
    Newell SY, Christian RR (1981) Frequency of dividing cells as an indicator of bacterial productivity. Appl Environ Microbiol 42:23–31Google Scholar
  39. 39.
    Newell SY, Fallon RD (1982) Bacterial productivity in the water column and sediments of the Georgia (USA) coastal zones: estimates via direct counting and parallel measurement of thymidine incorporation. Microb Ecol 8:33–46CrossRefGoogle Scholar
  40. 40.
    Novitsky JA (1983) Microbial activity at the sediment water interface in Halifax Harbor, Canada. Appl Environ Microbiol 45:1761–1766Google Scholar
  41. 41.
    Oppenheimer CH, Zobell CE (1952) The growth and viability of sixty three species of marine bacteria as influenced by hydrostatic pressure. J Mar Res 11:10–18Google Scholar
  42. 42.
    Poindexter JS (1981) Oligotrophy: feast or famine. Adv Microb Ecol 5:63–89Google Scholar
  43. 43.
    Riemann B, Nielsen P, Jeppesen M, Marcussen B, Fuhrman JA (1984) Diel changes in bacterial biomass and growth rates in coastal environments, determined by means of thymidine incorporation into DNA, frequency of dividing cells (FDC), and microautoradiography. Mar Ecol Prog Ser 17:227–235Google Scholar
  44. 44.
    Sneath PHA, Sokal RR (1974) The principles and practice of numerical classification. WH Freeman, San FranciscoGoogle Scholar
  45. 45.
    Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438Google Scholar
  46. 46.
    Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346CrossRefGoogle Scholar
  47. 47.
    Straka RD, Stokes JL (1960) Psychrophilic bacteria from Antarctic. J Bacteriol 80:622–625Google Scholar
  48. 48.
    Sullivan CW, Palmisano AC (1984) Sea ice microbial communities: distribution, abundance and diversity of ice bacteria in McMurdo Sound, Antarctica in 1980. Appl Environ Microbiol 47:788–795Google Scholar
  49. 49.
    Tanner AC, Herbert RA (1984) Heterotrophic microbial activity in maritime antarctic sediments. CNRS (Ed) CNRS Paris, Bact Mar, May 1982, pp 29–32Google Scholar
  50. 50.
    Toerien DF, Cavari B (1982) Effects of temperature on heterotrophic glucose uptake, mineralisation and turnover rates in lake sediments. Appl Environ Microbiol 43:1–5Google Scholar
  51. 51.
    Trousselier M, Legendre P (1981) A functional evenness index for microbial ecology. Microb Ecol 7:283–297Google Scholar
  52. 52.
    Turley CM, Lochte K (1985) Direct measurement of bacterial productivity in stratified waters close to a front in the Irish sea. Mar Ecol Prog Ser 23:209–219Google Scholar
  53. 53.
    Van Wambeke F, Bianchi MA (1985) Bacterial biomass production and ammonium regeneration in Mediterranean seawater supplemented with amino-acids. 2. Nitrogen flux through heterotrophic microplankton food chain. Mar Ecol Prog Ser 23:117–128Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • D. Delille
    • 1
  • M. Bouvy
    • 1
  • G. Cahet
    • 1
  1. 1.Laboratoire AragoUniversité P. et M. Curie, U.A. 117Banyuls sur merFrance

Personalised recommendations