Experientia

, Volume 41, Issue 6, pp 713–719 | Cite as

On the stability of cognitive processes

  • E. Cervén
Full Papers

Summary

An empirical and mathematical model for self-organization is proposed, based on elemental properties, on unique interaction and on the combination of hierarchical elements. In the model, higher elements are stabilized by the ‘cognitive’ (strong) interaction of subelements, disregarding intermediate elements. This is called ‘elementary reductionism’ and is illustrated by the sequence quarks-elementary particles-atoms-molecules-cells-organisms-societies. Optimal dynamic interaction of nonidentical elements is called ‘cognitive stability’. This is compared with thermodynamic equilibrium. The principal differences are outlined.

Key words

Self-organization cognitive processes elementary reductionism cognitive stability thermodynamic equilibrium hierarchical elements dynamics of interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acknowledgment. This work was supported by travel grants from the University of Uppsala and the Sweden-Japan Foundation for Research and Development 1982–1983.Google Scholar
  2. 2.
    Bertalanffy, L. v., General Systems Theory. Braziller, New York 1968.Google Scholar
  3. 3.
    Bonner, J. T., Chemical signals of social amoebae. Sci. Am.248 (April 1983) 106–112.Google Scholar
  4. 4.
    Clare, C. W. F., Chemical Machines, Maxwell's Demon and Living Organisms. J. theor. Biol.30 (1971) 1–34.PubMedGoogle Scholar
  5. 5.
    Dörner, D., Problemlösen als Informationsverarbeitung. Kohlhammer-Verlag, Stuttgart 1980.Google Scholar
  6. 6.
    Gabbiani, G., and Gabbiani, F., Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells. Proc. natn. Acad. Sci. USA80 (1983) 2361–2364.Google Scholar
  7. 7.
    Goldsmith, E., Thermodynamics or Ecodynamics? Ecologist11 (1981) 178.Google Scholar
  8. 8.
    Haken, H., Synergetics. Springer, New York 1978.Google Scholar
  9. 9.
    Herman, I. M., Crisona, N. J., and Pollard, T. D., Relation between cell activity and the distribution of cytoplasmic actin and myosin. J. Cell Biol.90 (1982) 84–91.Google Scholar
  10. 10.
    Hoyle, G., Muscles and Their Neural Control. Wiley-Interscience, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore 1983.Google Scholar
  11. 11.
    Malik, F., and Probst, G. J. B., Evolutionäres Management. Die Unternehmung. Schweiz. Z. Betriebswirtsch.2 (1981) 121.Google Scholar
  12. 12.
    Margenau, H., The Nature of Physical Reality. McGraw Hill, New York 1950.Google Scholar
  13. 13.
    Margenau, H., The Miracle of Existence. Ox Bow Press, Cambridge 1984.Google Scholar
  14. 14.
    Mayer, E., Biokybernetisches Controlling als Unternehmensphilosophie, in: Controlling Berater, Gruppe 3 (1983) 21.Google Scholar
  15. 15.
    McClintock, P., Low-temperature physics-Knudsen effect in liquid helium. Nature306 (1983) 422–423.Google Scholar
  16. 16.
    Naveh, Z., and Liebermann, A. S., Landscape Ecology-Theory and Application. Springer, New York 1984.Google Scholar
  17. 17.
    Pollack, R., Oxborn, M., and Weber, K., Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc. natn. Acad. Sci. USA72 (1975) 994–998.Google Scholar
  18. 18.
    Prigogine, I., and Lefever, R., Stability and selforganization in open systems, in: Membranes, Dissipative Structures and Evolution. Adv. Chem. Phys., vol. 29, pp. 1–28. Eds G. Nicolis and R. Lefever. John Wiley & Sons, New York, London, Sydney, Toronto 1975.Google Scholar
  19. 19.
    Probst, G. J. B., Kybernetische Gesetzeshypothesen als Basis für Gestaltungs- und Lenkungsregeln im Management. Paul-Haupt-Verlag, Bern 1981.Google Scholar
  20. 20.
    Schrödinger, E., Statistical Thermodynamics. University Press, Cambridge 1952.Google Scholar
  21. 21.
    Schrödinger, E., What is Life? The Physical Aspects of the Living Cell. University Press, Cambridge and The McMillian Company, New York 1946.Google Scholar
  22. 22.
    Vester, F., and v. Hesler, The Sensitivity Model. Umlandrerband, Frankfurt 1980.Google Scholar
  23. 23.
    Vester, F., Urban Systems in Crisis. Deutsche Verlagsanstalt, Stuttgart 1976.Google Scholar
  24. 24.
    Welch, G. R., On the role of organized multienzyme systems in cellular metabolism: A general synthesis. Prog. Biophys. molec. Biol.32 (1977) 103–191.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1985

Authors and Affiliations

  • E. Cervén
    • 1
  1. 1.Faculty of Pharmaceutical SciencesUniversity of TokyoTokyoJapan

Personalised recommendations