Calcified Tissue Research

, Volume 10, Issue 1, pp 128–135 | Cite as

Mineralization in the chick embryo

I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex
  • Edmund D. Pellegrino
  • Robert M. Biltz
Original Papers


The chemical and physical maturation of the bone salt was studied by serial observations on its stoichiometric and infrared characteristics in avian bone from early embryonic mineral deposition to full maturity after hatching. The sequence of chemical transformations in the developing bone showed most predominantly an inverse relationship between acid phosphate and carbonate, coincident with the formation of CO3-apatite. The data are consistent with the view that CO 3 2− is substituted for HPO 4 2− in the synthesis of CO3-apatite in bone.

Key words

Bone Embryo Calcification Phosphate Pyrophosphate Carbonate Apatite 


La maturation chimique et physique du sel osseux est étudiée par l'obervation des caractéristiques stoichiométriques et aux infra-rouges d'os embryonnaire d'oiseaux, du début jusqu'à la fin de la croissance adulte après éclosion. La succession des transformations chimiques de l'os en voie de développement montre surtout un rapport inverse entre le phosphate acide et le carbonate, ainsi que la formation de CO3-apatite. Ces résultats semblent indiquer que le CO 3 2− est substitué au HPO 4 2− au cours de la synthèse du CO3-apatite de l'os.


Die chemischen und physikalischen Umwandlungen zum stabilen Knochensalz in Hühnerknochen wurden anhand serienmäßiger Beobachtungen seiner stöchiometrischen Zusammensetzung und seiner infraroten Charakteristika untersucht; diese Beobachtungen erstreckten sich über die Zeit der frühen embryonalen Mineralablagerung bis zur vollständigen Reife nach dem Ausbrüten. Die Sequenz der chemischen Umwandlungen im sich entwickelnden Knochen zeigte hauptsächlich ein entgegengesetztes Verhältnis zwischen saurem Phosphat und Carbonat, das mit der Bildung von Carbonatapatit zusammenfällt. Diese Resultate weisen darauf hin, daß HPO 4 2− bei der Synthese von Carbonatapatit im Knochen durch CO 3 2− substituiert wird.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, L. L.: The genesis of carbonate apatites. Econ. Geol.54, 829–841 (1959).Google Scholar
  2. Armstrong, W. D., Singer, L.: Composition and constitution of the mineral phase of bone. Clin. Orthop.38, 179–190 (1965).PubMedGoogle Scholar
  3. Baxter, J. D., Biltz, R. M., Pellegrino, E. D.: The physical state of bone carbonate: A comparative infrared study in several mineralized tissues. Yale J. Biol. Med.38, 456–470 (1966).PubMedGoogle Scholar
  4. Berry, E. E., Leach, S. A.: The structure of some calcium deficient apatites. Arch. oral Biol.12, 171–174 (1967).CrossRefPubMedGoogle Scholar
  5. Biltz, R. M., Pellegrino, E. D.: The chemical anatomy of bone. I. A comparative study of bone composition in sixteen vertebrates. J. Bone J. Surg. A51, 456–466 (1969).Google Scholar
  6. Bisaz, S., Russell, R. G. G., Fleisch, H.: Isolation of inorganic pyrophosphate from bovine and human teeth. Arch. oral Biol.13, 683–696 (1968).CrossRefPubMedGoogle Scholar
  7. DeJong, W. F.: La substance minérale, dans les os. Rec. Trav. Chim.45, 445–448 (1926).Google Scholar
  8. Eanes, E. D., Posner, A.: Kinetics and mechanism of conversion of noncrystalline calcium phosphate to crystalline hydroxyapatite. Trans. N. Y. Acad. Sci.28, 233–241 (1965).Google Scholar
  9. Elliott, J. C.: Tooth enamel. Contributions to the Proceedings of an International Symposium on the Composition, Properties and Fundamental Structure of Tooth Enamel, p. 20. Bristol: John Wright & Sons, Ltd. 1965.Google Scholar
  10. Gee, A., Deitz, V. R.: Pyrophosphate formation upon ignition of precipitated basic calcium phosphate. J. Amer. chem. Soc.77, 2961–2965 (1955).CrossRefGoogle Scholar
  11. Gladish, G. H.: A hatching guide, p. 7. Higginsville, Missouri: Copyright Gilbert H. Gladish 1956.Google Scholar
  12. Gruner, J. W., McConnell, D., Armstrong, W. D.: The relationship between crystal structure and chemical composition of enamel and dentin. J. biol. Chem.121, 771–781 (1937).Google Scholar
  13. Hannah, R. W.: Notes on the potassium bromide disc technique for infrared analysis. Instrument News, Perkin-Elmer Corp.14, 7 (1963).Google Scholar
  14. Hayek, E.: Die Mineralsubstanz der Knochen. Klin. Wschr.45, 857–863 (1967).CrossRefPubMedGoogle Scholar
  15. Hendricks, S. B., Jefferson, M. E., Mosley, V. M.: The crystal structures of some natural and synthetic apatite-like substances. Z. Kristall.81, 352–369 (1932).Google Scholar
  16. Herman, H., Dallemagne, M. J.: Les carbonato-hydroxylapatites et le carbonate des os et des dents étudiés par la spectrophotométrie dans l'infrarouge. Bull. Soc. Chim. biol. (Paris)46, 373–383 (1964).Google Scholar
  17. Ingram, G. S.: The status of carbonate in bone. Calc. Tiss. Res.2, Suppl. 82 (1968).Google Scholar
  18. Kramer, B., Shear, M. J.: Composition of bone. IV. Primary calcification. J. biol. Chem.79, 147–160 (1928).Google Scholar
  19. Legeros, R. Z., Trautz, O. R., Legeros, J. P., Klein, E., Shirra, W. P.: Apatite crystallites: Effects of carbonate on morphology. Science155, 1409–1411 (1967).Google Scholar
  20. Logan, M. A.: Composition of cartilage, bone dentin and enamel. J. biol. Chem.110, 375–389 (1935).Google Scholar
  21. Logan, M. A.: Recent advances in the chemistry of calcification. Physiol. Rev.20, 522–560 (1940).Google Scholar
  22. McConnell, D.: Crystal chemistry of bone mineral: Hydrated carbonate apatites. Amer. Mineral.55, 1659–1669 (1970).Google Scholar
  23. Neal, W. M., Palmer, L. S., Echles, C. H., Gullickson, T. W.: Effect of age and nutrition on the calcium phosphate calcium carbonate ration in the bones of cattle. J. agric. Res.42, 115–121 (1931).Google Scholar
  24. Neuman, W. F., Mulryan, B. J.: Synthetic hydroxyapatite crystals. III. The carbonate system. Calc. Tiss. Res.1, 94–104 (1967).CrossRefGoogle Scholar
  25. Neuman, W. F., Toribara, T. Y., Mulryan, B. J.: The surface chemistry of bone. IX. Carbonate: phosphate exchange. J. Amer. chem. Soc.78, 4263–4272 (1956).CrossRefGoogle Scholar
  26. Newesely, H.: Conditions for the existence of octacalcium phosphate, withlockite and carbonate apatite. A contribution to the crystal chemistry of biological hard substances. Dtsch. zahnärztl. Z.20, 754–766 (1965).Google Scholar
  27. Pellegrino, E. D., Biltz, R. M.: Bone carbonate and the double salt hypothesis: its chemical, physical, and physiological implications. Trans. Amer. clin. climat. Ass.76, 181–191 (1965a).Google Scholar
  28. Pellegrino, E. D., Biltz, R. M.: The composition of human bone in uremia. Observations on the reservoir functions of bone and demonstration of a labile fraction of bone carbonate. Medicine (Baltimore)44, 397–418 (1965b).Google Scholar
  29. Pellegrino, E. D., Biltz, R. M.: Bone carbonate and the Ca to P molar ratio. Nature (Lond.)219, 1261–1262 (1968).Google Scholar
  30. Pellegrino, E. D., Biltz, R. M.: Calcium carbonate in medullary bone. Calc. Tiss. Res.6, 168–171 (1970).Google Scholar
  31. Pellegrino, E. D., Biltz, R. M., Miller, S. T.: Solubility of several skeletal carbonates: I. Role of the carbonate ion. Trans. Amer. clin. climat. Ass.79, 51–60 (1967).Google Scholar
  32. Posner, A. S.: Crystal chemistry of bone mineral. Physiol., Rev.49, 760–792 (1969).Google Scholar
  33. Quinaux, N.: Carbonate substitution in the apatitic lattice. Nature (Lond.)201, 182–183 (1964).Google Scholar
  34. Quinaux, N., Richelle, L. J.: X-ray diffraction and infrared analysis of bone specific gravity fractions in the growing rat. Israel J. med. Sci.3, 677–690 (1967).Google Scholar
  35. Romo, L. A.: Synthesis of CO3-apatite. J. Amer. chem. Soc.76, 3924–3925 (1954).CrossRefGoogle Scholar
  36. Roseberry, H. H., Hastings, A. B., Morse, J. K.: X-ray analysis of bone and teeth. J. biol. Chem.90, 395–407 (1931).Google Scholar
  37. Slyke, D. D. van, Folch, J.: Manometric carbon determination. J. biol. Chem.136, 509–541 (1940).Google Scholar
  38. Termine, J. D., Posner, A. S.: Infrared analysis of rat bone: Age dependency of amorphous and crystalline mineral fraction. Science153, 1523–1525 (1966).PubMedGoogle Scholar
  39. Trautz, O. R.: Crystallographic studies of calcium carbonate phosphate. Ann. N. Y. Acad. Sci.85, 145–160 (1960).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Edmund D. Pellegrino
    • 1
  • Robert M. Biltz
    • 1
  1. 1.Department of Medicine, Health Sciences CenterState University of New YorkStony BrookUSA

Personalised recommendations