Microbial Ecology

, Volume 15, Issue 2, pp 177–188 | Cite as

Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites

  • H. Insam
  • K. H. Domsch


The interrelationship between soil microorganisms and soil organic carbon was studied on an agricultural and on a forest chronosequence of open-pit mine reclamation soils. Thirty years after reclamation, soil carbon levels of 0.8% on the agricultural sites and 1.7% on the forest sites (A-horizon) were reached. Microbial biomass rose very fast to levels characteristic of undisturbed soils. Microbial carbon (Cmier) was 57 mg·100 g−1 soil after 15 years on the agricultural sites and 43 mg·100 g−1 on the forest sites. The contribution of Cmier to the total organic carbon (Corg) decreased with time, more rapidly on the forest sites than on the agricultural ones. From the Cmierr/Corg ratio it became evident that both chronosequences had not yet reached a steady state within the 50 years of reclamation. A significant decrease of the metabolic quotient qCO2 (microbial respiration per unit biomass) with time was observed on the agricultural sites but not on the forest sites. The Cmier/Corg ratio proved to be a reliable soil microbial parameter for describing changes in man-made ecosystems. For evaluating reclamation efforts, the Cmier/Corg ratio can be considered superior to its single components (Cmier or Corg) and to other parameters.


Total Organic Carbon Soil Organic Carbon Microbial Biomass Forest Site Microbial Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221CrossRefGoogle Scholar
  2. 2.
    Anderson TH, Domsch KH (1985) Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol Fert Soils 1:81–89CrossRefGoogle Scholar
  3. 3.
    Anderson TH, Domsch KH (in press) Carbon link between microbial biomass and soil organic matter. Symp Vol of the 4th Intl Symposium on Microbial Ecology, Ljubljana, YugoslaviaGoogle Scholar
  4. 4.
    Azam F, Malik KA, Hussain F (1986) Microbial biomass and mineralization-immobilization of nitrogen in some agricultural soils. Biol Fert Soils 2:157–163CrossRefGoogle Scholar
  5. 5.
    Beck T (1984) Mikrobiologische und biochemische Charakterisierung landwirtschaftlich genutzter Böden. II. Mitteilung. Beziehungen zum Humushaushalt. Z Pflanzenern Bodenk 147: 467–475Google Scholar
  6. 6.
    Burykin AM (1985) Soil formation rates in man-made landscapes as related to recultivation. Pochvovedeniye 2:81–93Google Scholar
  7. 7.
    Dickson BA, Crocker RL (1953) A chronosequence of soils and vegetation near Mt. Shasta, California. II. The development of the forest floors and the carbon and nitrogen profiles of the soil. J Soil Science 4:142–154Google Scholar
  8. 8.
    Dunger W (1967) Die Entwicklung der Makro- und Megafauna in rekultivierten Haldenböden. In: GraffO, Satchell JE (eds) Proc colloq dynamics of soil communities. Vieweg, Braunschweig, pp 340–352Google Scholar
  9. 9.
    Heal OW, MacLean JF Jr (1975) Comparative productivity in ecosystems—secondary productivity. In: Van Dobben WH, Lowe RH (eds) Unifying concepts in ecology. Junk, The HagueGoogle Scholar
  10. 10.
    Hersman LE, Temple KL (1978) ATP as a parameter for characterising coal strip mine spoils. Soil Sci 126:350–352Google Scholar
  11. 11.
    Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry 5. Marcel Dekker, New York, pp 415–471Google Scholar
  12. 12.
    Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol Biochem 8:209–213CrossRefGoogle Scholar
  13. 13.
    Kauri T (1982) Seasonal fluctuations in numbers of aerobic bacteria and their spores in four horizons of a beech forest soil. Soil Biol Biochem 14: 185–190CrossRefGoogle Scholar
  14. 14.
    Klein DA, Sorensen DL, Redente EF (1985) Soil enzymes: a predictor of reclamation potential and progress. In: Tate RL, Klein DA (eds) Soil reclamation processes. Marcel Dekker, New York, pp 141–172Google Scholar
  15. 15.
    Lang E (1986) Heterotrophe und autotrophe Nitrifikation untersucht an Bodenproben von drei Buchenstandorten. Göttinger Bodenkundliche Berichte 89:1–199Google Scholar
  16. 16.
    Lawrey JD (1977) The relative decomposition potential of habitats variously affected by surface of coal mining. Can J Bot 55:1544–1552Google Scholar
  17. 17.
    Odum EP (1969) The strategy of ecosystem development. Science 164:262–270PubMedGoogle Scholar
  18. 18.
    Parkinson D (1985) The restoration of soil productivity. In: Holdgate MW, Woodman MJ (eds) The breakdown and restoration of ecosystems. Plenum Press, New York, London, pp 213–229Google Scholar
  19. 19.
    Sauerbeck D, Gonzalez MA (1977) Field decomposition of carbon14-labelled plant residues in various soils of the Federal Republic of Germany and Costa Rica. IAEA; FAO; Agrochimica: soil organic matter studies. Proc Symp 1:159–170Google Scholar
  20. 20.
    Schafer WM, Nielsen GA, Dollhopf DJ, Temple K (1979) Soil genesis, hydrological properties, root characteristics and microbial activity of 1- to 50-year-old stripmine spoils. EPA-600/7-79-100. Environmental Protection Agency, Cincinnati, OhioGoogle Scholar
  21. 21.
    Schröder D (1986) Properties of reclaimed soils on loess. Transactions of the XIII Congress of the International Society of Soil Science 4:1403–1404Google Scholar
  22. 22.
    Schröder D, Stephan S, Schulte-Karring H (1985) Eigenschaften, Entwicklung und Wert rekultivierter Böden aus Löss im Gebiet des Rheinischen Braunkohlen-Tagebaues. Z Pflanzenernaehr Bodenk 148:131–146Google Scholar
  23. 23.
    Skujins J, Richardson BZ (1985) Humic matter enrichment in reclaimed soils under semiarid conditions. Geomicrobiology Journal 4:299–311Google Scholar
  24. 24.
    Stroo HF, Jencks EM (1982) Enzyme activity and respiration in minesoils. Soil Sci Soc Am J 46:548–553Google Scholar
  25. 25.
    Tate RL (1985) Microorganisms, ecosystem disturbance and soil-formation processes. In: Tate RL III, Klein DA (eds) Soil reclamation processes. Marcel Dekker, New York, Basel, pp 1–34Google Scholar
  26. 26.
    Visser S, Griffiths CL, Parkinson D (1983) Effects of surface mining on the microbiology of a prairie site in Alberta, Canada. Can J Soil Sci 63:177–189Google Scholar
  27. 27.
    Wittig R, Gödde M, Neite H, Papajewski W, Schall O (1985) Die Buchenwälder auf den Rekultivierunsflächen im Rheinischen Braunkohlenrevier: Artenkombination, pflanzensoziologische Stellung und Folgerungen für zukünftige Rekultivierungen. Angew Botanik 59: 95–112Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • H. Insam
    • 1
  • K. H. Domsch
    • 1
  1. 1.Bundesforschungsanstalt für LandwirtschaftInstitut für BodenbiologieBraunschweigFRG

Personalised recommendations