Microbial Ecology

, Volume 15, Issue 2, pp 135–149 | Cite as

Leaching of silica and uranium and other quantitative aspects of the lithobiontic colonization in a radioactive thermal spring

  • W. Heinen
  • A. M. Lauwers


The formation of microbial mats by thermophilic organisms on submerged rocks in radioactive thermal springs was followed quantitatively in situ as well as under experimental conditions, by determining the change in dry weight and organic matter as a function of time. Furthermore, the decay of the rock occurring in the springs could be shown to be directly related to the microbial colonization. Early in that process the formation of silicious gels, facilitating the settling of the organisms, could be observed. Simultaneously, this was accompanied by the leaching of silica from the underlying rock. This resulted in the destruction of the rock, which had been altered to a fine-grained dust underneath the colonizing mats; the microorganisms were found to move further downward within this layer. From the heavy metals present in the rock—iron (Fe), copper (Cu), manganese (Mn), uranium (U)— the leaching of uranium could be demonstrated, leading to the acquisition of this metal in the microbial mats in concentrations up to 15.34μg/mg dry weight. Direct evidence for the leaching of Si (silicon) and U could be obtained by measurement of these elements after their release from ground rock chips in cultures with microorganisms from the hot springs at 50°C. X-ray analysis of the biomats strongly suggested that Cu, Mn, and Fe are also accumulated.


Copper Silicon Heavy Metal Organic Matter Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berthelin J, Bergy G, Magne R (1977) Some aspects of the mechanisms of solubilization and insolubilization of uranium from granites by heterotrophic microorganisms. GBF Conference Bacterial Leaching, W. Schwartz (ed) Verlag Chemie, Weinheim, New York, pp 251–260Google Scholar
  2. 2.
    Costerton JW, Irwin RT, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Ann Rev Microbiol 35:299–324CrossRefGoogle Scholar
  3. 3.
    Degens ET, Khoo F, Michaelis W (1977) Uranium anomaly in Black Sea sediments. Nature 269:566–569CrossRefPubMedGoogle Scholar
  4. 4.
    DiSpirito AA, Tuovinen OH (1982) Uranous oxidation and carbon dioxide fixation byThiobacillus ferrooxidans. Arch Microbiol 133:28–32CrossRefGoogle Scholar
  5. 5.
    DiSpirito AA, Talnagi JW, Tuovinen OH (1983) Accumulation and cellular distribution of uranium inThiobacillus ferrooxidans. Arch Microbiol 135:250–253CrossRefGoogle Scholar
  6. 6.
    Eugster HP, Jones BF (1968) Gels composed of sodium-aluminum silicates, Lake Magadi, Kenia. Science 161:160–163Google Scholar
  7. 7.
    Friedmann EI (1980) Enolithic microbial life in hot and cold deserts. Origin of Life 10:223–235CrossRefGoogle Scholar
  8. 8.
    Golubic S, Friedmann EI, Schnieder J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petr 51:457–478Google Scholar
  9. 9.
    Heinen W (1960) Siliciumstoffwechsel bei Mikroorganismen I. Mittlg Aufnahme von Silicium durch Bakterien. Arch Mikrobiol 37:199–210CrossRefPubMedGoogle Scholar
  10. 10.
    Heinen W, Lauwers AM (1985) Epilithische Bakterien in Wasserproben der Franz-Joseph-Quelle in Badgastein. Mikroskopie 42:94–101Google Scholar
  11. 11.
    Heinen W, Lauwers AM (1986) Mold on the rocks: a lithobiontic fungus from the sediments of radioactive thermal waters in the Gastein Valley, Austria. Acta Bot Neerl, 35:367–372Google Scholar
  12. 12.
    Henderson MEK, Duff RB (1963) The release of metallic and silicate ions from minerals, rocks and soil by fungal activity. J Soil Sci 14:236–246Google Scholar
  13. 13.
    Jones LHP, Handreck KA (1963) Effects of iron and aluminum oxides on silica in solution in soils. Nature 198:852–853Google Scholar
  14. 14.
    Kahan D, Lasman M (1966) Protozoa from the hot springs of Badgastein. Fund Balneobioclim 3:289–298Google Scholar
  15. 15.
    Kilmer VJ (1979) Minerals and agriculture. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam, Oxford, New York, pp 515–558Google Scholar
  16. 16.
    Komma EG (1968) Grosse Heilwasseranalyse der Franz-Joseph-Quelle. Scheminzky et al. (1972) Über das Vorkommen vonThiobacterium bovista in Thermalwässern. Int Rev ges Hydrobiol 57:801–813Google Scholar
  17. 17.
    Lauwers AM, Heinen W (1974) Biodegradation and utilization of silica and quartz. Arch Microbiol 95:67–78Google Scholar
  18. 18.
    Lauwers AM, Heinen W (1985a) Charakterisierung der thermophilen Mikroflora aus zehn verschiedenen Quellen. Mikroskopie 42:68–78Google Scholar
  19. 19.
    Lauwers AM, Heinen W (1985b) Lithobionten in den Quellen des Franz-Joseph-Stollens in Badgastein. Mikroskopie 42:124–134Google Scholar
  20. 20.
    Lundgren DG, Dean W (1979) Biogeochemistry of iron. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam, Oxford, New York, pp 211–251Google Scholar
  21. 21.
    Mann H, Fyfe WS (1984) An experimental study of algal uptake of U, Ba, V, Co, and Ni from dilute solutions. Chem Geol 44:385–398CrossRefGoogle Scholar
  22. 22.
    Mann H, Fyfe WS (1985) Algal uptake of U and some other metals: implications for global geochemical cycling. Precambrian Res 30:337–349CrossRefGoogle Scholar
  23. 23.
    Meadows PS, Anderson JG (1968) Microorganisms attached to marine sand grains. J Mar Biol Ass UK 48:161–175Google Scholar
  24. 24.
    Meixner H (1966) Die Uranminerale vom Thermalstollen bei Böckstein/Badgastein. D Aufschi 15:86–90Google Scholar
  25. 25.
    Mutschlechner G (1963) Lage und Namen der Gasteiner Thermalquellen. Badgast Badebl 20, 21:3–22Google Scholar
  26. 26.
    Myers GE, McCready RGL (1966) Bacteria can penetrate rock. Can J Microbiol 12:477–484Google Scholar
  27. 27.
    Oppenheimer CH, Master JM (1963) Transition of silicate and carbonate crystal structure by photosynthesis and metabolism. Geol Soc Amer 42:125–127Google Scholar
  28. 28.
    Paine SD, Linggood FV, Schimmer F, Thrupp TC (1933) The relationship of microorganisms to the decay of stone. Trans Roy Soc B 222:97–102Google Scholar
  29. 29.
    Sakagushi T, Horikoshi T, Nakajima A (1978) Uptake of uranium from seawater by microalgae. J Ferment Technol 56:561–565Google Scholar
  30. 30.
    Scheminzky F, Klas Z, Job C (1972) Über das Vorkommen vonThiobacterium bovista in Thermalwässern. Int Rev ges Hydrobiol 57:801–813Google Scholar
  31. 31.
    Silverman MP (1979) Biological and organic chemical decomposition of silicates. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam, Oxford, New York, pp 445–465Google Scholar
  32. 32.
    Silverman MP, Ehrlich HL (1964) Microbial formation and degradation of minerals. Adv Microbiol 6:153–206Google Scholar
  33. 33.
    Silverman MP, Munoz EF (1970) Fungal attack on rock: solubilization and altered infrared spectra. Science 169:985–987Google Scholar
  34. 34.
    Sprey B, Bochem HC (1981) Uptake of uranium into the algaDunaliella detected by EDAX and LAMMA. Fres Z Anal Chem 308:239–245CrossRefGoogle Scholar
  35. 35.
    Strandberg GW, Shumate SE, Parrott JR. (1981) Microbial cells as biosorbent for heavy metals: accumulation of uranium bySaccharomyces cerevisiae andPseudomonas aeruginosa. Appl Environ Microbiol 41:237–245Google Scholar
  36. 36.
    Taylor GH (1979) Biogcochemistry of uranium minerals. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam, Oxford, New York, pp 485–514Google Scholar
  37. 37.
    Trudinger PA, Swaine DJ, Skyring GW (1979) Biogeochemical cycling of elements-general considerations. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam, Oxford, New York, pp 1–27Google Scholar
  38. 38.
    Webley DM, Duff RB, Mitchell WA (1960) A plate method for studying the breakdown of synthetic and natural silicates by soil bacteria. Nature 188:766–767PubMedGoogle Scholar
  39. 39.
    Webley DM, Henderson MEK, Taylor IF (1963) The microbiology of rocks and weathered stones. J Soil Sci 14:102–112Google Scholar
  40. 40.
    Woolfolk CA, Whiteley HR (1962) Reduction of inorganic compounds with molecular hydrogen byMicrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium transition and other elements. J Bacteriol 84:647–658PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • W. Heinen
    • 1
    • 2
  • A. M. Lauwers
    • 1
    • 2
  1. 1.Laboratory of Exobiology, Faculty of ScienceUniversity of NijmegenThe Netherlands
  2. 2.Forschungsinstitut Gastein-TauernregionHaus Austria-KurverwaltungBadgasteinOsterreich, Austria

Personalised recommendations