Skip to main content
Log in

The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Light in the photosynthetically active region

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The vertical zonation of the Antarctic cryptoendolithic community appears to form in response to the light regime in the habitat. However, because of the structure of the habitat, the light regime is difficult to study directly. Therefore, a mathematical model of the light regime was constructed, which was used to estimate the total photon flux in different zones of the community. Maximum fluxes range from about 150μm photons m−2 s−1 at the upper boundary of the community to about 0.1μm photons m−2 s−1. Estimates of the annual productivity in the community indicate that the lowest zone of the community is light limited, with the maximal annual carbon uptake equivalent to less than the carbon content of one algal (Hemichloris) cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannister TT (1974) Production equations in terms of chlorophyll concentrations, quantum yield, and the upper limit to production. Limnol Oceanogr 19:1–12

    Google Scholar 

  2. Barkstrom BR, Querfeld CW (1975) Concerning the effect of anisotropic scattering and finite depth on the distribution of solar radiation in snow. J Glaciol 14:107–124

    Google Scholar 

  3. Bell RA, Athey PV, Sommerfeld MR (1986) Cryptoendolithic algal communities of the Colorado Plateau. J Phycol 22:429–435

    Google Scholar 

  4. Bohren CF, Barkstrom BR (1974) Theory of the optical properties of snow. J Geophys Res 79:4527–4535

    Google Scholar 

  5. Chandrasekhar S (1960) Radiative transfer. Dover Publications, Inc, New York

    Google Scholar 

  6. Colijn J (1982) Light absorption in the waters of the Ems-Dollard estuary and its consequences for the growth of phytoplankton and microphytobenthos. Netherlands J Sea Res 15:196–216

    Google Scholar 

  7. Davies-Colley RJ, Pridmore RD, Hewitt JE (1986) Optical properties of some freshwater phytoplanktonic algae. Hydrobiologia 133:165–178

    Google Scholar 

  8. Emslie AG, Aronson JR (1973) Spectral reflectance and emittance of particulate materials. 1. Theory. Appl Optics 12:2563–2572

    Google Scholar 

  9. Fehér D, Frank M (1936) Untersuchungen über die Lichtökologie der Bodenalgen. Arch Mikrobiol 7:1–31

    Google Scholar 

  10. Fenchel T, Staarup BJ (1971) Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22:172–182

    Google Scholar 

  11. Friedmann EI (1971) Light and scanning electron microscopy of the endolithic desert algal habitat. Phycologia 10:411–428

    Google Scholar 

  12. Friedmann EI (1977) Microorganisms in Antarctic desert rocks from Dufek Massif. Antarct J US 12:26–30

    Google Scholar 

  13. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Google Scholar 

  14. Friedmann EI, Galun M (1974) Desert algae, lichens, and fungi. In: Brown GW (ed) Desert biology, vol II. Academic Press, New York, pp 166–212

    Google Scholar 

  15. Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193:1247–1249

    Google Scholar 

  16. Friedmann EI, Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Klug MJ, Reddy CA (ed) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 177–185

    Google Scholar 

  17. Friedmann EI, Weed R (1987) Trace-fossil formation in modern microbial communities: biogenous and abiotic weathering in the Antarctic cold desert. Science 236:703–705

    PubMed  Google Scholar 

  18. Friedmann EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross desert of Antarctica: satellite-mediated continuous nanoclimate data, 1984 to 1986. Polar Biol 7:273–287

    PubMed  Google Scholar 

  19. Friedmann I, Lipkin Y, Ocampus-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200

    Google Scholar 

  20. Fukshansky L, Kazarinova N (1980) Extension of the Kubelka-Munk theory of light propagation in intensely scattering materials to fluorescent media. J Optical Soc America 70:1101–1111

    Google Scholar 

  21. Goedecke GH (1977) Radiative transfer in closely packed media. J Optical Soc America 67:1339–1348

    Google Scholar 

  22. Goldberg S (1958) Introduction to difference equations. John Wiley and Sons, Inc, New York

    Google Scholar 

  23. Haardt H, Nielsen GA (1980) Attenuation coefficients of monochromatic light in marine sediments. Oceanol Acta 3:333–338

    Google Scholar 

  24. Halldal P (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coralFavia. Biol Bull 134:411–424

    Google Scholar 

  25. Harris GP (1978) Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergeb Limnol 10:1–171

    Google Scholar 

  26. Hoffmann C (1949) Über die durchlässigkeit dünner sandschichten für Licht. Planta 37:48–56

    Google Scholar 

  27. Hunt GR, Ashley RP (1979) Spectra of altered rocks in the visible and near infrared. Econ Geol 74:1613–1629

    Google Scholar 

  28. Jørgensen BB, Des Marais DJ (1986) A simple fiber-optic microprobe for high resolution light measurements: application in marine sediments. Limnol Oceanogr 31:1376–1383

    PubMed  Google Scholar 

  29. Kappen L (1983) Ecology and physiology of the Antarctic fruticose lichenUsnea sulphurea (Koenig) Th. Fries. Polar Biol 1:249–225

    Google Scholar 

  30. Kappen L, Friedmann EI (1983) Ecophysiology of lichens in the dry valleys of southern Victoria Land, Antarctica. II. CO2 gas exchange in endolithic lichens. Polar Biol 1:227–232

    Google Scholar 

  31. Kirk JTO (1975) A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. II. Spherical cells. New Phytol 75:21–36

    Google Scholar 

  32. Krumbein WE (1979) Photolithotrophic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol J 1:139–203

    Google Scholar 

  33. Leclerc JC, Couté A, Dupuy P (1983) Etude des conditions climatiques annuelles de deux stations d'algues subaeriennes sciaphiles. Phycologia 22:445–452

    Google Scholar 

  34. Liou K-M (1980) An introduction to atmospheric radiation. Academic Press, New York

    Google Scholar 

  35. Meador WE, Weaver WR (1980) Two-stream approximation of radiative transfer in planetary atmospheres: a unified description of existing methods and a new improvement. J Atmospheric Sciences 37:630–643

    Google Scholar 

  36. Melamed NT (1963) Optical properties of powders. Part I. Optical absorption coefficients and the absolute value of the diffuse reflectance. Part II. Properties of luminescent powders. J Appl Physics 34:560–570

    Google Scholar 

  37. Nicot J (1960) Some characteristics of the microflora in desert sands. In: Parkinson D, Ward JS (ed) The ecology of soil fungi. University of Liverpool Press, Liverpool, pp 94–97

    Google Scholar 

  38. Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross desert of Antarctica: mathematical models of the thermal regime. Microb Ecol 16:253–270

    PubMed  Google Scholar 

  39. Perkins EJ (1963) Penetration of light into littoral soils. J Ecol 51:687–692

    Google Scholar 

  40. Pollack JB, McKay CP (1985) The impact of polar stratospheric clouds on the heating rates of the winter polar stratosphere. J Atmospheric Sciences 42:245–262

    Google Scholar 

  41. Priddle J (1980) The production ecology of benthic plants in some Antarctic lakes. II. Laboratory physiology studies. J Ecol 68:141–153

    Google Scholar 

  42. Reuter R (1980) Characterization of marine particle suspensions by light scattering. I. Numerical predictions from Mie theory. Oceanol Acta 3:317–324

    Google Scholar 

  43. Sagan C, Pollack JB (1974) Differential transmission of sunlight on Mars: biological implications. Icarus 21:490–495

    Google Scholar 

  44. Seyfried M, Fukshansky L (1983) Light gradients in plant tissue. Appl Optics 22:1402–1407

    Google Scholar 

  45. Simmons EL (1975) Diffuse reflectance spectroscopy: a comparison of the theories. Appl Optics 14:1380–1386

    Google Scholar 

  46. Spurr SH, Barnes BV (1973) Forest ecology. Ronald Press Co, New York

    Google Scholar 

  47. Tschermak-Woess E, Friedmann EI (1984)Hemichloris antarctica, gen. et sp. nov. (Chlorococcales, Chlorophyta), a cryptoendolithic alga from Antarctica. Phycologia 23:443–454

    PubMed  Google Scholar 

  48. Valiela I (1984) Marine ecological processes. Springer-Verlag, New York

    Google Scholar 

  49. van de Hulst HC (1980) Multiple light scattering, vol 1 and 2. Academic Press, New York

    Google Scholar 

  50. Vestal JR, Federle TW, Friedmann EI (1984) The effects of light and temperature on the Antarctic cryptoendolithic microbiotain vitro. Antarct J US 19:173–174

    Google Scholar 

  51. Vogelmann TC, Bjorn LO (1984) Measurement of light gradients and spectral regime in plant tissue with a fiber optic probe. Physiol Plant 60:361–368

    Google Scholar 

  52. Weast RC (ed) (1976) Handbook of chemistry and physics. 57th ed. CRC Press, Cleveland, p F-200

    Google Scholar 

  53. Williams TP (1985) Some uses of a MacNichol-type microspectrophotometer in the study of retinal photoreceptors. In: Fein A, Szuts E (ed) The visual system. Allan R Liss, Inc, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nienow, J.A., McKay, C.P. & Friedmann, E.I. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Light in the photosynthetically active region. Microb Ecol 16, 271–289 (1988). https://doi.org/10.1007/BF02011700

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02011700

Keywords

Navigation