Skip to main content
Log in

Nitrous oxide production by nitrogen-fixing, fast-growing Rhizobia

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Rhizobium trifolii, R. leguminosarum, andR. “hedysarum”, grownex planta under anoxic conditions in a chemically defined medium, evolve N2O from NO3 , NO2 , and (NH4)2NO3. The amount of nitrous oxide formed after 96 hours is about 0.2μM×mg−1 cells d.w. Large availability of organic matter enhances the production of N2O from nitrate by free-livingR. trifolii in peat/sand mixtures. Denitrification of the above species andR. meliloti was detected also in planta. Nitrous oxide production increases almost linearly from 10–45μM×mg−1 nodules d.w. when nitrogen-fixing plants are exposed to increasing concentrations of nitrate (1–12μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casella S, Ceci D, Bonari E, Lepidi AA, Nuti MP (1981) Batterizzazione di leguminose da foraggio e da granella: un triennio di ricerche in Italia. Rivista di Agronomia 3–4:173–182

    Google Scholar 

  2. Casella S, Reynolds KC, Dyson JR, Gault RR, Brockwell J (1984) Nodulation studies on legumes exotic to Australia:Hedysarum coronarium. FEMS Microbiol Letters, in press.

  3. Citernesi U, Neglia R, Seritti A, Lepidi AA, Bagnoli G, Galluzzi R, Nuti MP (1977) Nitrogenfixing bacteria in the gastroenteric cavity of soil animals. Soil Biol Biochem 9:71–72.

    Google Scholar 

  4. Daniel RM, Smith IM, Phillip JAD, Ratcliffe HD, Drozd JW, Bull AT (1980) Anaerobic growth and denitrification byRhizobium japonicum and other Rhizobia. J Gen Microbiol 120:517–521

    Google Scholar 

  5. Gibson AH (1976) Recovery and compensation by nodulated legumes to environmental stress. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants, Cambridge Univ Press, London pp 385–405

    Google Scholar 

  6. Heichel GH, Vance CP (1979) Nitrate N and Rhizobium strain roles in alfalfa seedling nodulation and growth. Crop Sci 19:512–518

    Google Scholar 

  7. Hooykaas PJJ, Snijdewint FGM, Schilperoort RA (1983) Identification of thesym plasmids ofRhizobium leguminosarum strain 1001 and its transfer to and expression in other rhizobia andAgrobacterium tumefaciens (in press)

  8. Ishizawa S (1980) Note on nitrate reduction in Rhizobium. Soil Sci Plant Nutr 26:447–450

    Google Scholar 

  9. Lepidi AA, Picci G (1967) Nitrato-riduzione e denitrificazione ad opera diRhizobium leguminosarum (Frank) in terreni cobalto-molibdeno-carenti. Agric Ital pp 223–236

  10. Lepidi AA, Nuti MP, Bagnoli G, Filippi C, Galluzzi R (1979) Further researches on the involvement of Rhizobium large plasmids in legume nodulation. In: Bond DA, Scarascia-Mugnozza GT, Poulsen MH (eds) Some current research onVicia faba in Western Europe, EEC Publ Off, Luxemburg pp 436–460

    Google Scholar 

  11. Manhart J, Wong PP (1980) Nitrate effect on nitrogen fixation (acetylene reduction). Plant Physiol 65:502–505

    Google Scholar 

  12. Nuti MP, Casella S, Filippi C, Lepidi AA, Galluzzi R (1981) Rhizobia as inoculant for field trials in marginal soils of middle and northern Italy. In: Gibson AH, Newton WE (eds) Current Perspectives in Nitrogen Fixation, Austr Acad Sci Canberra p 514

  13. Nuti MP, Lepidi AA, Schilperoort RA, Hooykaas PJJ, Prakash RK (1982) The plasmids of Rhizobium and symbiotic nitrogen fixation. In: Kahl G, Schell J (eds) Molecular Biology of Plant Tumors, Academic Press pp 561–588

  14. Pedrazzini F, Nannipieri P (1982) Evolution of nitrous oxide in a nitrate-treated soil at a low partial pressure of acetylene. Plant and Soil 66:429–431

    Google Scholar 

  15. Prakash RK, Hooykaas PJJ, Lebedoer AM, Nuti MP, Lepidi AA, Juliot JS, Dénarié J (1980) Detection, isolation, and characterization of large plasmids in Rhizobium. In: Newton WE, Orme-Johnson NH (eds) Nitrogen Fixation, vol II. Univ Park Press, Baltimore, pp 136–163

    Google Scholar 

  16. Rajagopalan T (1938) Studies on groundnut nodule organism. IV. Physiology of the organism: intermediary metabolism. Ind J Agric 8:379–382

    Google Scholar 

  17. Rigaud J (1976) Effet des nitrates sur la fixation d'azote par les nodules de haricot (Phaseolus vulgaris L.). Physiol Veg 14:297–308

    Google Scholar 

  18. Rigaud J, Bergersen FJ, Turner GL, Daniel RM (1973) Nitrate-dependent anaerobic acetylene reduction and nitrogen fixation by soybean bacteroids. J Gen Microbiol 77:137–144

    Google Scholar 

  19. Vincent J (1970) A manual for the practical study of root-nodules bacteria. IBP Handbook n 15, Blackwell Sci Publ, Oxford, pp 164

    Google Scholar 

  20. Wilson JK (1947) The legume bacteria liberate gaseous nitrogen from nitrate. Proc Soil Sci Soc Am 12:215

    Google Scholar 

  21. Zablotowicz RM, Eskew DL, Focht DD (1978) Denitrification in Rhizobium. Can J Microbiol 24:757–760

    PubMed  Google Scholar 

  22. Zablotowicz RM, Focht DD (1979) Denitrification and anerobic nitrate-dependent acetylene reduction in cowpea Rhizobium. J Gen Microbiol 111:445–448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casella, S., Leporini, C. & Nuti, M.P. Nitrous oxide production by nitrogen-fixing, fast-growing Rhizobia. Microb Ecol 10, 107–114 (1984). https://doi.org/10.1007/BF02011418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02011418

Keywords

Navigation