Archives of Toxicology

, Volume 64, Issue 3, pp 218–230 | Cite as

Identification of antiarrhythmic drugs and their metabolites in urine

  • Hans H. Maurer
Original Articles

Abstract

Identification of the antiarrhythmic drugs ajmaline, aprindine, diltiazem, disopyramide, flecainide, gallopamil, lidocaine, lorcainide, mexiletine, phenytoin, prajmaline, propafenone, quinidine, sparteine, tocainide and verapamil and their metabolites in urine is described. After acid hydrolysis of the conjugates, extraction and acetylation, the urine samples were analysed by computerized gas chromatography-mass spectrometry. Using ion chromatography with the selective ions m/z 58, 72, 84, 86, 136, 224, 266, and 426, the possible presence of antiarrhythmic drugs and/or their metabolites was indicated. The identity of positive signals in the reconstructed ion chromatograms was confirmed by a visual or computerized comparison of the stored full mass spectra with the reference spectra. The ion chromatograms, reference mass spectra and gas Chromatographic retention indices (OV-101) are documented. The method presented is integrated in a general screening procedure (general unknown analysis) for several groups of drugs.

Key words

Identification Antiarrhythmic drugs Metabolites Gas chromatography-mass spectrometry Analytical toxicology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahnoff M, Ervik M, Lagerström P-O, Persson B-A, Vessman J (1985) Review: drug level monitoring: cardiovascular drugs. J Chromatogr 340: 73–138PubMedGoogle Scholar
  2. Berninger H, Möller MR (1977) Retentionsindices zur gaschromatographischen Identifizierung von Arzneimitteln. Arch Toxicol 37: 295–305PubMedGoogle Scholar
  3. Cailleux A, Turcant A, Premel-Cabic A, Allain P (1981) Identification and quantification of neutral and basic drugs in blood by gas chromatography and mass spectrometry. J Chromatogr Sci 19: 163–176PubMedGoogle Scholar
  4. Dusci LJ, Hackett LP (1985) Simultaneous determination of lidocaine, mexiletine, disopyramide and quinidine in plasma by high performance liquid chromatography. J Anal Toxicol 9: 67–70PubMedGoogle Scholar
  5. Fretthold D, Jones P, Sebrosky G, Sunshine I (1986) Testing for basic drugs in biological fluids by solvent extraction and dual capillary GC/NPD. J Anal toxicol 10: 10–14PubMedGoogle Scholar
  6. Jane I, McKinnon A, Flanagan RJ (1985) High-performance liquid Chromatographic analysis of basic drugs on silica columns using nonaqueous ionic eluents, II. application of UV, fluorescence and electrochemical oxidation detection. J Chromatogr 323: 191–225PubMedGoogle Scholar
  7. Kovats E (1958) Gaschromatographische Charakterisierung organischer Verbindungen, Teil 1: Retentionsindizes aliphatischer Halogenide, Alkohole, Aldehyde and Ketone. Helv Chim Acta 41: 1915–1932Google Scholar
  8. Malikin G, Lam S, Karmen A (1984) Therapeutic drug monitoring by high performance thin-layer chromatography. Chromatographia 18: 253–259Google Scholar
  9. Maurer H (1988 a) Gaschromatographisch-Massenspektrometrische Identifizierung von Antiarrhythmika und ihren Metaboliten im Urin. Arch Pharm (Weinheim) 321: 627Google Scholar
  10. Maurer H (1988 b) Die “General-Unknown”-Analyse als Grundlage der klinisch-toxikologischen Analytik. Habilitationsschrift, Universität des Saarlandes, Homburg (Saar), FRGGoogle Scholar
  11. Maurer H, Pfleger K (1983 a) Screening procedure for detecting butyrophenone and bisfluorophenyl neuroleptics in urine using a computerized gas chromatographic-mass spectrometric technique. J Chromatogr 272: 75–85PubMedGoogle Scholar
  12. Maurer H, Pfleger K (1983 b) Screening procedure for detecting anti-inflammatory analgesics and their metabolites in urine using a computerized gas chromatographic-mass spectrometric technique. Z Anal Chem 314: 586–594Google Scholar
  13. Maurer H, Pfleger K (1984 a) Screening procedure for detection of antidepressants and their metabolites in urine using a computerized gas chromatographic-mass spectrometric technique. J Chromatogr 305: 309–323PubMedGoogle Scholar
  14. Maurer H, Pfleger K (1984 b) Screening procedure for detection of phenothiazine and analogous neuroleptics and their metabolites in urine using a computerized gas chromatographic-mass spectrometric technique. J Chromatogr 306: 125–145PubMedGoogle Scholar
  15. Maurer H, Pfleger K (1984 c) Screening procedure for the detection of opioids, other potent analgesics and their metabolites in urine using a computerized gas chromatographic-mass spectrometric technique. Z Anal Chem 317: 42–52Google Scholar
  16. Maurer H, Pfleger K (1985) Screening procedure for the detection of antiparkinsonian drugs and their metabolites in urine using a computerized gas chromatographic-mass spectrometric technique. Z Anal Chem 321: 363–370Google Scholar
  17. Maurer H, Pfleger K (1986) Identification and differentiation of betablockers and their metabolites in urine by computerized gas chromatography-mass spectrometry. J Chromatogr 382: 147–165PubMedGoogle Scholar
  18. Maurer H, Pfleger K (1987) Identification and differentiation of benzodiazepines and their metabolites in urine by computerized gas chromatography-mass spectrometry. J Chromatogr 422: 85–101PubMedGoogle Scholar
  19. Maurer H, Pfleger K (1988 a) Toxicological detection of ajmaline, prajmaline and their metabolites in urine integrated in a “general-unknown” analysis procedure using gas chromatography-mass spectrometry. Z Anal Chem 330: 458–459Google Scholar
  20. Maurer H, Pfleger K (1988 b) Screening procedure for the detection of alkanolamine antihistamines and their metabolites in urine using computerized gas chromatography-mass spectrometry. J Chromatogr 428: 43–60PubMedGoogle Scholar
  21. Maurer H, Pfleger K (1988 c) Identification and differentiation of alkylam ine antihistamines and their metabolites in urine by computerized gas chromatography-mass spectrometry. J Chromatogr 430: 31–41PubMedGoogle Scholar
  22. Maurer H, Pfleger K (1988 d) Toxicological detection of ethylendiamine antihistamines and their metabolites in urine by computerized gas chromatography-mass spectrometry. Z Anal Chem 331: 744–756Google Scholar
  23. Maurer H, Pfleger K (1988 e) Identification of phenothiazine antihistamines and their metabolites in urine. Arch Toxicol 62: 185–191PubMedGoogle Scholar
  24. Maurer H, Weber A, Pfleger K (1982) Schnelle Probenvorbereitung für die Gaschromatographie-Massenspektrometrie in der analytischen Toxikologie. Z Anal Chem 311: 414–415Google Scholar
  25. Pfleger K (1975) Methods for the investigation of absorption in animals. In: Forth W, Rummel W (eds) International encyclopedia of pharmacology and therapeutics, section 39 B, Vol II. Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig, pp 797–817Google Scholar
  26. Pfleger K, Maurer H, Weber A (1990 a) Mass spectral and GC data of drugs pesticides, poisons and their metabolites, 2nd edn. VCH-Verlagsgesellschaft, Weinheim, Cambridge, New York, Deerfield Beach (FL), Basel (in press)Google Scholar
  27. Pfleger K, Maurer H, Weber A (1990 b) Mass spectral library of drugs pesticides, poisons and their metabolites, 2nd rev. Hewlett Packard, Palo Alto, CA (in press)Google Scholar
  28. Proelss HF, Townsend TB (1986) Simultaneous liquid-chromatographic determination of five antiarrhythmic drugs and their major active metabolites in serum. Clin Chem 32: 1311–1317PubMedGoogle Scholar
  29. Tomaskova V (1987) Application of Chromatographic methods in analysis of drugs with anti-dysrhythmic action and their metabolites. Farm Obzor 56: 81–88Google Scholar
  30. Turcant A, Premel-Cabic A, Cailleux A, Allain P (1988) Screening for neutral and basic drugs in blood by dual fused-silica column chromatography with nitrogen-phosphorus detection. Clin Chem 34: 1492–1497PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Hans H. Maurer
    • 1
  1. 1.Institut für Pharmakologie und Toxikologie der Universität des SaarlandesHomburg/SaarFederal Republic of Germany

Personalised recommendations