Microbial Ecology

, Volume 7, Issue 1, pp 13–21 | Cite as

Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges

  • Clive R. Wilkinson
  • Madeleine Nowak
  • Brian Austin
  • Rita R. Colwell
Article

Abstract

Bacteria were isolated from marine sponges from the Mediterranean and the Great Barrier Reef and characterized using numerical taxonomy techniques. A similar sponge-specific bacterial symbiont was found in 9 of 10 sponges examined from both geographic regions. This symbiont occurred in sponges of two classes and seven orders, and it probably has been associated with sponges over a long geological time scale. Another symbiont apparently specific to the spongeVerongia aerophoba was found. This sponge is yellow-orange, similar in color to the bacterial symbiont. These symbionts are two of a large mixed bacterial population present in many sponges.

Keywords

Color Sponge Geographic Region Nature Conservation Bacterial Population 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertrand, J. C., and J. Vacelet: L'association entre Eponges Cornees et bacteries. C. R. Acad. Sci. (Paris) [D]273, 638–641 (1971)Google Scholar
  2. 2.
    Cowan, S. T.: Cowan and Steel's Manual for the Identification of Medical Bacteria, 2nd Ed. Cambridge University Press, Cambridge (1974)Google Scholar
  3. 3.
    Eimhjellen, K. E.: Photosynthetic bacteria and carotenoids from a sea spongeHalichondrium panicea. Acta Chem. Scand.21, 2280–2281 (1967)Google Scholar
  4. 4.
    Gallissian, M.-F., and J. Vacelet: Ultrastructure de quelques stades de l'ovogenese de spongiaires du genreVerongia (Dictyoceratida). Ann. Sci. Natl. Zool.18, 381–404 (1976)Google Scholar
  5. 5.
    Garrone, R.: Phylogenesis of connective tissue. Morphological aspects and biosynthesis of sponge intercellular matrix. In L. Robert (ed.): Frontiers in Matrix Biology, Vol. 5. S. Karger, Basel (1978)Google Scholar
  6. 6.
    Imhoff, J. F., and H. G. Truper: Marine sponges as habitats of anaerobic phototrophic bacteria. Microb. Ecol.3, 1–9(1976)CrossRefGoogle Scholar
  7. 7.
    Levi, C., and P. Levi: Populations bacteriennes dans les Eponges. J. Microsc.4, 151 (1965)Google Scholar
  8. 8.
    Levi, C., and P. Levi: Embryogenese deChondrosia reniformis (Nardo), Demosponge ovipare, et transmission des bacteries symbiotique. Ann. Sci. Natl. Zool.18, 367–380 (1976)Google Scholar
  9. 9.
    MacLeod, R. A.: On the role of inorganic ions in the physiology of marine bacteria. Adv. Microbiol. Sea1, 95–126 (1968)Google Scholar
  10. 10.
    Madri, P. P., M. Hermel, and G. Claus: The microbial flora of the spongeMicrocionia prolifera Verrill and its ecological implications. Botan. Mar.XIV, 1–5 (1971)Google Scholar
  11. 11.
    Moat, A. G.: Microbial Physiology. John Wiley & Sons, New York (1979)Google Scholar
  12. 12.
    Sneath, P. H. A., and R. R. Sokal: Numerical Taxonomy. The Principles and Practice of Numerical Classification. Freeman and Co., San Francisco (1973)Google Scholar
  13. 13.
    Vacelet, J.: Etude en microscopie electronique de l'association entre bacteries et spongiaires du genreVerongia (Dictyoceratida). J. Microsc. Biol. Cell23, 271–288 (1975)Google Scholar
  14. 14.
    Vacelet, J., and C. Donadey: Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Biol. Ecol.30, 301–314 (1977)CrossRefGoogle Scholar
  15. 15.
    Wilkinson, C. R.: Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar. Biol.49, 161–167 (1978)CrossRefGoogle Scholar
  16. 16.
    Wilkinson, C. R.: Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar. Biol.49, 169–176 (1978)CrossRefGoogle Scholar
  17. 17.
    Wilkinson, C. R.: Microbial associations in sponges. III. Ultrastructure of thein situ associations in coral reef sponges. Mar. Biol.49, 177–185 (1978)CrossRefGoogle Scholar
  18. 18.
    Wilkinson, C., and R. Garrone: Nutrition of marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon. In D. C. Smith and Y. Tiffon (eds.): Nutrition in the Lower Metazoa, pp. 157–161. Pergamon Press, Oxford (1980)Google Scholar
  19. 19.
    Wilkinson, C. R., R. Garrone, and D. Herbage:In vitro digestion of insoluble sponge collagen by sponge symbiotic bacteria. In C. Levi and N. Boury-Esnault (eds.): Biologie des Spongiaires. Colloq. Int. C.N.R.S. No. 291, 361–364 (1979)Google Scholar
  20. 20.
    Wilkinson, C. R., and J. Vacelet: Transplantation of marine sponges to different conditions of light and current. J. Exp. Mar. Biol. Ecol.37, 91–104 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • Clive R. Wilkinson
    • 1
  • Madeleine Nowak
    • 1
  • Brian Austin
    • 2
  • Rita R. Colwell
    • 2
  1. 1.Laboratoire d'Histologie et Biologie TissulaireUniversité Claude BernardVilleurbanneFrance
  2. 2.Department of MicrobiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations