Advertisement

Microbial Ecology

, Volume 2, Issue 2, pp 119–138 | Cite as

Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater

  • G. W. Fuhs
  • Min Chen
Article

Abstract

Several strains resembling members of theAcinetobacter-Moraxella-Mima group of bacteria were isolated from activated sludge-type sewage treatment plants designed for phosphate removal. The bacteria are obligate aerobes but utilize as carbon and energy sources low-molecular intermediates generated anaerobically, particularly acetate and ethanol. These bacteria can be shown to be responsible for the phosphate luxury uptake occurring in these treatment plants. The bacteria are physiologically unusual in that they perform luxury uptake of phosphates in a complete growth medium. Phosphate release occurs on addition of a carbon source to the carbon-starved bacteria, lowering pH or both. The bacteria persist in the system by virtue of their ability to form floc.

Keywords

Phosphate Acetate Wastewater Sludge Carbon Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumann, P., M. Doudoroff, and R. Y. Stanier, 1968. A study of theMoraxella group. II. Oxidase-negative species (genusAcinetobacter).J. Bacteriol. 95: 1520–1541.PubMedGoogle Scholar
  2. 2.
    Conn, H. J., M. W. Jennison, and O. B. Week. 1957. Routine tests for the identification of bacteria.In: “Manual of Microbiological Methods” [H. J. Conn, editor], pp. 140–168, McGraw-Hill, New York.Google Scholar
  3. 3.
    Frank, E. 1962. Vergleichende Untersuchungen zum Calcium-, Kalium- und Phosphathaushalt von Grünalgen. II. Calciummangel beiHydrodictyon, Sphaeroplea undChlorella.Flora 152: 157–167.Google Scholar
  4. 4.
    Fuhs, G. W. 1969. Interference-microscopic observations on polyphosphate granules and gas vacuoles in cyanophyceae [in German with English summary].Österr. Bot. Z. 116 (Geitler-Festschrift): 411–422.Google Scholar
  5. 5.
    Gordon, J., and J. W. McLeod. 1928. The practical application of the direct oxidase reaction in bacteriology.J. Pathol. Bacteriol. 31: 185–190.Google Scholar
  6. 6.
    Halvorson, J. F. 1963. Gliding motility in the organismsBacterium anitratum (B5W),Moraxella lwoffi ana Alkaligenes haemolysans, as compared toMoraxella nonliquefaciens.Acta Path. Microbiol. Scand. 59: 200–204.PubMedGoogle Scholar
  7. 7.
    Harold, F. M. 1966. Inorganic polyphosphates in biology: structure, metabolism, and function.Bact. Rev. 30: 772–784.PubMedGoogle Scholar
  8. 8.
    Henriksen, S.D. 1963.Mimeae. The standing in nomenclature of the names of this tribus and of its genera and species.Intern. Bull. Bacteriol. Nomen. Taxon. 13: 51–57.Google Scholar
  9. 9.
    Levin, G. V., inventor. U. S. Patent No. 236, 766 “Sewage Treatment Process,” issued February 22, 1966.Google Scholar
  10. 10.
    Levin, G. V., and J. Shapiro. 1965. Metabolic uptake of phosphorus by wastewater organisms.J. Water Pollut. Control Fed. 37: 800–821.Google Scholar
  11. 11.
    Lewis, K. F., H. J. Blumenthal, R. W. Weinrach, and S. Weinhouse. 1955. An isotope tracer study of glucose catabolism inPseudomonas fluorescens.J. Biol. Chem. 216: 273–286.PubMedGoogle Scholar
  12. 12.
    Lodder, J., and N. J. W. Kreger-van Rij. 1952. “The Yeasts.” North Holland, Amsterdam.Google Scholar
  13. 13.
    Menar, A. B., and D. Jenkins. 1970. Fate of phosphorus in wastewater treatment processes: enhanced removal of phosphate by activated sludge.Environ. Sci. Technol. 4: 1115–1121.Google Scholar
  14. 14.
    Meyer, A. 1904. Orientierende Untersuchungen über die verbreitung, morphologie und chemie des volutins.Bot. Ztg. 62: 113–152.Google Scholar
  15. 15.
    Milbury, W. F., D. McCauley, and C. H. Hawthorne. 1971. Operation of conventional activated sludge for maximum phosphorus removal.J. Water Pollut. Control Fed. 43: 1890–1901.Google Scholar
  16. 16.
    Moore, H. G., R. B. Higgins, and E. G. Fruh, 1969. Surplus phosphorus uptake by microorganisms. Batch tests with diluted activated sludge cultures. Center for Research in Water Resources Report No. 41, Environmental Health Engineering Program, The University of Texas, Austin.Google Scholar
  17. 17.
    Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters.Anal. Chim. Acta 27: 31–36.Google Scholar
  18. 18.
    Rowan, K. W. 1966. Phosphorus metabolism in plants.Intern Rev. Cytol. 19: 201–290.Google Scholar
  19. 19.
    Shapiro, J. 1967. Induced release and uptake of phosphate by microorganisms.Science 155: 1269–1271.PubMedGoogle Scholar
  20. 20.
    Shapiro, J., G. V. Levin, and H. G. Zea. 1967. Anoxically induced release of phosphate in wastewater treatment.J. Water Pollut. Control Fed. 39: 1810–1818.Google Scholar
  21. 21.
    Skerman, V. B. D. 1959. “A Guide to the Identification of the Genera of Bacteria.” The Williams and Wilkins Co., Baltimore.Google Scholar
  22. 22.
    Thomas, E. A. 1965. Phosphat-Elimination in der Belebtschlammanlage von Männedorf und Phosphate-Fixation in See und Klärschlamm.Vierteljahresschr. Naturf. Ges. Zürich 110: 419–434.Google Scholar
  23. 23.
    Vacker, D., C. H. Connell, and W. N. Wells. 1967. Phosphate removal through municipal wastewater treatment at San Antonio, Texas.J. Water Pollut. Control Fed. 39: 750–771.Google Scholar
  24. 24.
    Voelz, H., V. Voelz, and R. O. Ortigoza. 1966. The “polyphosphate overplus” phenomenon inMyxococcus xanthus and its influence on the architecture of the cell.Arch. Mikrobiol. 53: 371–388.PubMedGoogle Scholar
  25. 25.
    Weinberger, L. W. 1949. Nitrogen metabolism in the activated sludge process. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  26. 26.
    White, G. A., and C. H. Wang. 1964. The dissimilation of glucose and gluconate byAcetobacter xylinum, I, II.Biochem. J. 90: 408–430.PubMedGoogle Scholar
  27. 27.
    Wood, L. W., and K. E. Chua. 1973. Glucose flux at the sediment-water interface of Toronto Harbour, Lake Ontario, with reference to pollution stress.Canad. J. Microbiol. 19: 413–420.Google Scholar
  28. 28.
    Yall, I., W. H. Boughton, R. C. Knudsen, and N. A. Sinclair. 1970. Biological uptake of phosphorus by activated sludge.Appl. Microbiol. 20: 145–150.PubMedGoogle Scholar

Copyright information

© Springer Verlag New York Inc 1975

Authors and Affiliations

  • G. W. Fuhs
  • Min Chen

There are no affiliations available

Personalised recommendations