Advertisement

Microbial Ecology

, Volume 3, Issue 2, pp 79–105 | Cite as

The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park

  • Richard W. Castenholz
Article

Abstract

In the Mammoth Springs (Yellowstone National Park) waters with near neutral pH and soluble sulfide (H2S, HS, S2−) of over 1–2 mg/liter (30–60ΜM) are characterized by substrate covers of phototrophic bacteria (Chloroflexus and aChlorobium-like unicell) above 50‡C and by a blue-green alga (Spirulina labyrinthiformis) below this temperature.Synechococcus. Mastigocladus, and other blue-green algae typical of most hot springs of western North America are excluded, apparently by sulfide. The sulfide-adaptedSpirulina photosynthesized at maximum rates at 45‡C and at approximately 300 to 700ΜEin/m2/sec of “visible” radiation. Sulfide (0.6–1.2 mM) severely poisoned photosynthesis of nonadapted populations, but those continuously exposed to over 30ΜM tolerated at least 1 mM without inhibition. A normal14C-HCO3 photoincorporation rate was sustained with 0.6–1 mM sulfide in the presence of DCMU (7ΜM) or NH2OH (0.2 mM), although both of these photosystem II inhibitors prevented photoincorporation without sulfide. Other sulfur-containing compounds (S2O32− SO32−, S2O42− thioglycolic acid cysteine) were unable to relieve DCMU inhibition. The lowering of the photoincorporation rate by preferentially irradiating photosystem I was also relieved by sulfide. The most tenable explanation of these results is that sulfide is used as a photo-reductant of CO2, at least when photosystem II is inhibited. It is suggested that in some blue-green algae photosystem II is poisoned by a low sulfide concentration, thus making these algae sulfidedependent if they are to continue photosynthesizing in a sulfide environment. Presumably a sulfidecytochrome reductase enzyme system must be synthesized for sulfide to be used as a photo-reductant.

Keywords

Sulfide Synechococcus Spirulina DCMU Sulfide Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, E. T. and Day, A. L. 1935. Hot springs of the Yellowstone National Park.Carnegie Inst. Wash. Publ. No. 466, 525 pp.Google Scholar
  2. 2.
    Anagnostidis, K. And Golubić, S. 1966. über die ökologie einiger Spirulina-Arten.Nova Hedwigia 11: 309–333.Google Scholar
  3. 3.
    Bargar, K. E. and Muffler, L. J. P. 1975. Geologic map of the travertine deposits, Mammoth Hot Springs, Yellowstone National Park, Wyoming. Miscell. Field Studies Map MF-659, U. S. Geol. Survey, Wash. D. C.Google Scholar
  4. 4.
    Brock, T. D. 1973. Lower pH limit for the existence of blue-green algae: Evolutionary and ecological implications.Science 179: 480–482.PubMedGoogle Scholar
  5. 5.
    Castenholz, R. W. 1969. Thermophilic blue-green algae and the thermal environment.Bacteriol. Rev. 33: 476–504.PubMedGoogle Scholar
  6. 6.
    Castenholz, R. W. 1970. Laboratory culture of thermophilic cyanophytes.Schweiz. Z. Hydrol. 32: 538–551.Google Scholar
  7. 7.
    Castenholz, R. W. 1972. Low temperature acclimation and survival in thermophilicOscillatoria terebriformis. pp. 406–418.In: Taxonomy and Biology of Blue-green Algae. T. V. Desikachary, editor. University of Madras.Google Scholar
  8. 8.
    Castenholz, R. W. 1973a. Ecology of blue-green algae in hot springs, pp. 379–414.In: The Biology of Blue-green Algae. N. G. Carr and B. A. Whitton, editors. Blackwell, London.Google Scholar
  9. 9.
    Castenholz, R. W. 1973b. The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs.Limnol. & Oceanogr. 18: 863–876.Google Scholar
  10. 10.
    Castenholz, R. W. 1976. The effect of sulfide on the blue-green algae of hot springs. I.New Zealand and Iceland. J. Phycol. 12: 54–68.Google Scholar
  11. 11.
    Cheniae, G. M. and Martin, I. F. 1972. Effects of hydroxylamine on photosystem II. II. Photoreversal of the NH2OH destruction of O2 evolution. Plant Physiol.50: 87–94.Google Scholar
  12. 12.
    Cohen, Y., Padan, E., and Shilo, M. 1975a. Facultative anoxygenic photosynthesis in the cyanobacteriumOscillatoria limnetica.J. Bacteriol. 123: 855–861.PubMedGoogle Scholar
  13. 13.
    Cohen, Y., JØrgensen, B. B., Padan, E., and Shilo, M. 1975b. Sulphide-dependent anoxygenic photosynthesis in the cyanobacteriumOscillatoria limnetica.Nature 257: 489–492.CrossRefGoogle Scholar
  14. 14.
    Doemel, W. N. and Brock, T. D. 1970. The upper temperature limit ofCyanidium caldarium.Arch. Mikrobiol. 72: 326–332.PubMedGoogle Scholar
  15. 15.
    Knaff, D. B., Buchanan, B. B., and Malkin, R. 1973. Effect of oxidation-reduction potential on light-induced cytochrome and bacteriochlorophyll reactions in chromatophores from the photosynthetic green bacteriumChlorobium.Biochim. Biophys. Acta 325: 94–101.PubMedGoogle Scholar
  16. 16.
    Knobloch, K. 1966a. Photosynthetische Sulfid-Oxydation grüner Pflanzen. I.Mitteilung. Planta (Berl.) 70: 73–86.Google Scholar
  17. 17.
    Knobloch, K. 1966b. Photosynthetische Sulfid-Oxidation grüner Pflanzen. II.Mitteilung. Planta (Berl.) 70:172–186.Google Scholar
  18. 18.
    Kratz, W. A. and Myers, J. 1955. Photosynthesis and respiration of three blue-green algae.Plant Physiol. 30: 275–280.Google Scholar
  19. 19.
    Kusai, K. and Yamanaka, T. 1973a. The oxidation mechanisms of thiosulphate and sulfide inChlorubium thiosulphatophilum: Roles of cytochrome c-551 and cytochrome c-553.Biochim. Biophys. Acta 325: 304–314.PubMedGoogle Scholar
  20. 20.
    Kusai, A. and Yamanaka, T. 1973b. Cytochrome c (553,Chlorobium thiosulfatophilum) is a sulfide-cytochrome c reductase.FEBS Letters 34: 235–237.CrossRefPubMedGoogle Scholar
  21. 21.
    Kusai, A. and Yamanaka, T. 1973c. A novel function of cytochrome c (555,Chlorobium thiosulfatophilum) in oxidation of thiosulfate.Biochem. Biophys. Res. Commun. 51: 107–112.CrossRefPubMedGoogle Scholar
  22. 22.
    Lemasson, C., Tandeau de Marsac, N., and Cohen-Barzire, G. 1973. Role of allophycocyanin as a light-harvesting pigment in cyanobacteria.Proc. Nat. Acad. Sci. USA 70: 3130–3133.Google Scholar
  23. 23.
    Lenz, J. and Zeitzschel, B. 1968. Zur Bestimmung des Extinktionskoeffizienten für Chlorophyll a in Methanol.Kieler Meeres-Forschungen 24: 41–50.Google Scholar
  24. 24.
    Madigan, M. T. and Brock, T. D. 1975. Photosynthetic sulfide oxidation byChloroftexus aurantiacus, a filamentous, photosynthetic, gliding bacterium.J. Bacteriol. 122: 782–784.PubMedGoogle Scholar
  25. 25.
    Meeks, J. C. and Castenholz, R. W. 1971. Growth and photosynthesis in an extreme thermophile,Synechococcus lividus (Cyanophyta). Arch.Mikrobiol. 78: 25–41.CrossRefPubMedGoogle Scholar
  26. 26.
    Meyer, T. E., Bartsch, R. G., Cusanovich, M. A., and Mathewson, J. H. 1968. The cytochromesof Chlorobium thiosulfatophilum.Biochim. Biophys. Acta 153: 854–861.PubMedGoogle Scholar
  27. 27.
    Myers, J. and Kratz, W. A. 1955. Relations between pigment content and photosynthetic characteristics in a blue-green alga.J. Gen. Physiol. 39: 11–22.CrossRefPubMedGoogle Scholar
  28. 28.
    Peary, J. and Castenholz, R. W. 1964. Temperature strains of a thermophilic blue-green alga.Nature 202: 720–721.Google Scholar
  29. 29.
    Pfennig, N. and Trüper, H.G. 1974. The phototrophic bacteria, pp. 24–64.In: Bergey's Manual of Determinative Bacteriology. R. E. Buchanan and N. E. Gibbons, editors. Williams & Wilkins, Baltimore.Google Scholar
  30. 30.
    Pickett, J. M. and Myers, J. 1966. Monochromatic light saturation curves for photosynthesis inChlorella.Plant Physiol. 41: 90–98.PubMedGoogle Scholar
  31. 32.
    Pierson, B. K. and Castenholz, R. W.1971. Bacteriochlorophylls in gliding, filamentous prokaryotes from hot springs.Nature 233: 25–27.CrossRefPubMedGoogle Scholar
  32. 32.
    Pierson, B. K. and Castenholz, R. W. 1974a. A phototrophic gliding filamentous bacterium of hot springs,Chloroflexus aurantiacus, gen. and sp. nov.Arch. Mikrobiol. 100: 5–24.Google Scholar
  33. 33.
    Pierson, B. K. and Castenholz, R. W. 1974b. Studies of pigments and growth inChloroflexus aurantiacus, a phototrophic filamentous bacterium.Arch. Mikrobiol. 100: 283–305.Google Scholar
  34. 34.
    Rowe, J. J., Fournier, R. O., and Morey, G. W. 1973. Chemical analysis of thermal waters in Yellowstone National Park, Wyoming, 1960–65.Geological Survey Bull. 1303.Google Scholar
  35. 35.
    Sistrom, W. R. and Clayton, R. K. 1964. Studies on a mutant ofRhodopseudomonas spheroides unable to grow photosynthetically.Biochim. Biophys. Acta 88: 61–73.PubMedGoogle Scholar
  36. 36.
    Stewart, W. D. P. and Pearson, H. W. 1970. Effects of aerobic and anaerobic conditions on growth and metabolism of blue-green algae.Proc. Roy. Soc. London B 175: 293–311.Google Scholar
  37. 37.
    Weller, D., Doemel, W., and Brock, T. D. 1975. Requirement of low oxidation potential for photosynthesis in a blue-green alga (Phormidium sp.).Arch Mikrobiol. 104: 7–13.Google Scholar
  38. 38.
    White, D. E., Hem, J. D., and Waring, G. A. 1963. Chemical composition of subsurface waters.U. S. Geological Survey Prof. Paper 440-F.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • Richard W. Castenholz
    • 1
  1. 1.Department of BiologyUniversity of OregonEugene

Personalised recommendations