Skip to main content
Log in

Microbial attachment to particles in marine and freshwater ecosystems

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Scanning electron microscopy observations ofin situ suspended marine and freshwater particles show diverse but similar modes of bacterial and fungal attachment. A survey of Sierra Nevada mountain lakes and pelagic and near-shore waters in the Pacific Ocean indicates that attachment is most noticeable in the near-surface waters where fresh dissolved and particulate input of carbon from phytoplankton and elevated temperatures favor microbial growth. The most common modes of attachment are: adhesive stalk formation, growth on adhesive webs, attachment by the use of pili-like appendages and slimy capsular secretions, and molecular or chemical sorption without the use of visualized structural appendages. Attached microbial growth is accelerated when particulate substrates are supplied, even when they are not rich in organic nutrients. This is the case in the Lake Tahoe basin, where microflora attached to eroded silts can significantly modify the organic carbon and nutrient content of such minerogenous particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, T. F. 1951. Techniques for the preservation of three dimensional structure in preparing specimens for the electron microscope.Trans. N.Y. Acad. Sci., Sec. 2,13: 130–134.

    Google Scholar 

  2. Armstrong, R., Goldman, C. R., and Fujita, D. K. 1971. A rapid method for the estimation of carbon content of seston and periphyton.Limnol. Oceanogr. 16: 137–139.

    Google Scholar 

  3. Corpe, W. A. 1970. Attachment of marine bacteria to solid surfaces.In: Adhesion in Biological Systems. R. Manly, editor, pp. 73–85. Academic Press, New York.

    Google Scholar 

  4. Floodgate, G. M. 1972. The mechanism of bacterial attachment to detritus in aquatic systems.Mem. Ist. Ital. Idrobiol.; Suppl. 29: 309–323.

    Google Scholar 

  5. Henriksen, A., 1970. Determination of total nitrogen, phosphorus and iron in freshwater by photo-oxidation with ultra-violet irradiation.Analyst 95: 601–608.

    Article  Google Scholar 

  6. Holm-Hansen, O. and Booth, C. R. 1966. The measurement of adenosine triphosphate in the oceans and its ecological significance.Limnol. Oceunogr. 11: 510–519.

    Google Scholar 

  7. Jannasch, H. W. and Pritchard, P. H. 1972. The role of inert particulate matter in the activity of aquatic microorganisms.Mem. Ist. Ital. Idrobiol., Suppl. 29: 289–308.

    Google Scholar 

  8. Lowry, O. H., Roseborough, N. J., Farr, A. L., and Ranstall, R. J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193: 265–275.

    PubMed  Google Scholar 

  9. Marshall, K. C., Stout, R., and Mitchell, R. 1971. Selective sorption of bacteria from seawater.Can. J. Microbiol. 17: 1413–1416.

    PubMed  Google Scholar 

  10. Paerl, H. W., 1973. Detritus in Lake Tahoe: Structural modification by attached microflora.Science 180: 496–498.

    Google Scholar 

  11. Paerl, H. W., 1974. Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and fresh-water systems.Limnol. Oceanogr. 19: 966–972.

    Google Scholar 

  12. Paerl, H. W. and Goldman, C. R. 1972. Stimulation of heterotrophic and autotrophic activities of a planktonic microbial community by siltation at Lake Tahoe, California.Mem. Ist, Ital. Idrobiol., Suppl. 29: 129–147.

    Google Scholar 

  13. Paerl, H. W. and Shimp, S. L. 1973. Preparation of filtered plankton and detritus for study with scanning electron microscopy.Limnol. Oceanogr. 18: 802–805.

    Google Scholar 

  14. Riley, G. A., 1963. Organic aggregates in sea water and the dynamics of their formation and utilization.Limnol. Oceanogr. 8: 372–381.

    Google Scholar 

  15. Rodina, A. G., 1963. Microbiology of detritus of lakes.Limnol. Oceanogr. 8: 388–393.

    Google Scholar 

  16. Scott, T. A. and Melvin, E. H. 1953. Determination of dextran with anthrone.Anal. Chem. 25: 1656–1666.

    Article  Google Scholar 

  17. Seki, H., 1972. The role of microorganisms in the marine food chain with reference to organic aggregates.Mem. Ist. Ital. Idrobiol., Suppl. 29: 245–259.

    Google Scholar 

  18. Stark, W. H., Stadler, J., and McCoy, E. 1938. Some factors affecting the bacterial populations of freshwater lakes.J. Bacteriol. 36: 653–654.

    Google Scholar 

  19. Stotzky, G., 1967. Clay minerals and microbial ecology.Trans. N.Y. Acad. Sci. 30: 11–21.

    PubMed  Google Scholar 

  20. Stotzky, 1973. Techniques to study interactions between microorganisms and clay mineralsin vivo andin vitro.Bull. Ecol. Res. Comm. (Stockholm) 17: 17–28.

    Google Scholar 

  21. Waksman, S. A. and Carey, C. L. 1935. Decomposition of organic matter in seawater by bacteria.J. Bacteriol. 29: 531–543.

    Google Scholar 

  22. Wiebe, W. J. and Pomeroy, L. R. 1972. Microorganisms and their association with aggregates and detritus in the sea: A microscopic study.Mem. Ist. Ital. Idrobiol., Suppl. 29: 325–352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paerl, H.W. Microbial attachment to particles in marine and freshwater ecosystems. Microb Ecol 2, 73–83 (1975). https://doi.org/10.1007/BF02010382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02010382

Keywords

Navigation