Skip to main content
Log in

Resistant proteoglycans in epiphyseal plate cartilage. Variations in their distribution in relationship to age and species

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The localizations of resistant proteoglycans (RPGs) in the epiphyseal plates of rats, dogs, and humans are similar. In the epiphyseal plates from young rats, dogs, and humans, the RPGs form a stratum at the junction of the zones of resting and proliferating cells. Non-calcified cartilage RPGs are associated with cells which have the potential for proliferation or column organization. As the individuals age, RPGs are found in intercolumnar regions or at times are even absent. There is also a type of RPGs in calcified cartilage, including the calcified cartilage subjacent to the articular surface, in all species. In human epiphyseal plates, looser fibrillar RPGs change abruptly to a more condensed type in the zone of provisional calcification. Calcified cartilage RPGs stain more intensely with toluidine blue and may represent a different type of RPGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, H. C., Sajdera, S. W.: The fine structure of bovine nasal cartilage. Extraction as a technique to study proteoglycans and collagen in cartilage matrix. J. Cell Biol49, 650–663 (1971)

    Article  PubMed  Google Scholar 

  2. Bélanger, L. F.: Autoradiographic visualization of the entry and transit of S35 in cartilage, bone and dentine of young rats and the effect of hyaluronidase in vitro. Canad. J. Biochem. Physiol.32, 161–169 (1954)

    PubMed  Google Scholar 

  3. Bhatnagar, R. S., Prockop, D. J.: Dissociation of the synthesis of sulphated mucopolysaccharides and the synthesis of collagen in embryonic cartilage. Biochim. biophys. Acta (Amst.)130, 383–392 (1966)

    Google Scholar 

  4. Bowness, J. M., Jacobs, M.: Chondroitin sulfate changes in puppy rib cartilage during the period of calcification. Canad. J. Biochem.46, 63–67 (1968)

    Google Scholar 

  5. Campo, R. D.: Protein-polysaccharides of cartilage and bone in health and disease. Clin. Orthop.68, 182–209 (1970)

    PubMed  Google Scholar 

  6. Campo, R. D.: Soluble and resistant proteoglycans in epiphyseal plate cartilage. Calcif. Tiss. Res.14, 105–119 (1974)

    Google Scholar 

  7. Campo, R. D., Dziewiatkowski, D. D.: Intracellular synthesis of protein-polysaccharides by slices of bovine costal cartilage. J. biol. Chem.237, 2729–2735 (1962)

    PubMed  Google Scholar 

  8. Campo, R. D., Dziewiatkowski, D. D.: Turnover of the organic matrix of cartilage and bone as visualized by autoradiography. J. Cell Biol.18, 19–29 (1963)

    Article  PubMed  Google Scholar 

  9. Campo, R. D., Phillips, S. J.: Electron microscopic visualization of proteoglycans and collagen in bovine costal cartilage. Calcif. Tiss. Res.13, 83–92 (1973)

    Article  Google Scholar 

  10. Campo, R. D., Tourtellotte, C. D.: The composition of bovine cartilage and bone. Biochim. biophys. Acta (Amst.)14, 614–624 (1967)

    Google Scholar 

  11. Dziewiatkowski, D. D., Tourtellotte, C. D., Campo, R. D.: Degradation of protein-polysaccharide (chondromucoprotein) by an enzyme extracted from cartilage. In: The chemical physiology of mucopolysaccharides (Quintarelli, G., ed.), pp. 63–76. Boston: Little, Brown 1968

    Google Scholar 

  12. Eisenstein, R., Larsson, S.-E., Sorgente, N., Kuettner, K. E.: Collagen-proteoglycan relationships in epiphyseal cartilage. Amer. J. Path.73, 443–452 (1973)

    PubMed  Google Scholar 

  13. Fawns, H. T., Landells, J. W.: Histochemical studies of rheumatic conditions. I. Observations on the fine structure of the matrix of normal bone and cartilage. Ann. rheum. Dis.12, 105–113 (1953)

    PubMed  Google Scholar 

  14. Glimcher, M. J., Seyer, J., Brickley, D. M.: The solubilization of collagen and protein-polysaccharides from the developing cartilage of lathyritic chicks. Biochem. J.115, 923–926 (1969)

    PubMed  Google Scholar 

  15. Hascall, V. C., Heinegård, D.: Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid. J. biol. Chem.249, 4232–4241 (1974)

    PubMed  Google Scholar 

  16. Hascall, V. C., Sajdera, S. W.: Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J. biol. Chem.244, 2384–2396 (1969)

    PubMed  Google Scholar 

  17. Hascall, V. C., Sajdera, S. W.: Physical properties and polydispersity of proteoglycan from bovine nasal cartilage. J. biol. Chem.245, 4910–4930 (1970)

    Google Scholar 

  18. Herbage, D., Lucas, J. M., Huc, A.: Collagen and proteoglycan interactions in bovine articular cartilage. Biochim. biophys. Acta (Amst.)336, 108–116 (1974)

    Google Scholar 

  19. Hirschman, A., Dziewiatkowski, D. D.: Protein-polysaccharide loss during endochondral ossification. Science154, 393–395 (1966)

    PubMed  Google Scholar 

  20. Joftes, D. L.: Liquid emulsion autoradiography with tritium. Lab. Invest.8, 131–138 (1959)

    PubMed  Google Scholar 

  21. Kobayashi, T. K., Pedrini, V.: Proteoglycans-collagen interactions in human costal cartilage. Biochim. biophys. Acta (Amst.)303, 148–160 (1973)

    Google Scholar 

  22. Larsson, S.-E., Ray, R. D., Kuettner, K. E.: Microchemical studies on acid glycosaminoglycans of the epiphyseal zones during endochondral calcification. Calcif. Tiss. Res.13, 271–285 (1973)

    Article  Google Scholar 

  23. Lindenbaum, A., Kuettner, K. E.: Mucopolysaccharides and mucoproteins of calf scapula. Calcif. Tiss. Res.1, 153–165 (1961)

    Article  Google Scholar 

  24. Lohmander, S., Hjerpe, A.: Proteoglycans of mineralizing rib and epiphyseal cartilage. Biochim. biophys. Acta (Amst.)404, 93–109 (1975)

    Google Scholar 

  25. Malawista, I., Schubert, M.: Chondromucoprotein; new extraction method and alkaline degradation. J. biol. Chem.230, 535–544 (1958)

    PubMed  Google Scholar 

  26. Mankin, H. J.: Localization of tritiated thymidine in articular cartilage of rabbits. I. Growth in immature cartilage. J. Bone Jt Surg. A44, 682–688 (1962)

    Google Scholar 

  27. Mathews, M. B.: The interaction of collagen and acid mucopolysaccharides. Biochem. J.96, 710–716 (1965)

    PubMed  Google Scholar 

  28. Matukas, V. J., Krikos, G. A.: Evidence for changes in protein polysaccharide associated with the onset of calcification in cartilage. J. Cell Biol.39, 43–48 (1968)

    Article  PubMed  Google Scholar 

  29. Meikle, M. C.: The influence of function on chondrogenesis at the epiphyseal cartilage of a growing long bone. Anat. Rec.182, 387–400 (1975)

    Article  PubMed  Google Scholar 

  30. Pearse, A. G. E.: Histochemistry, theoretical and applied, p. 917. Boston: Little, Brown 1961

    Google Scholar 

  31. Rigal, W. M.: The use of tritiated thymidine in studies of chondrogenesis. In: Radio-isotopes and bone (McLean, F. C., Lacroix, P., Budy, A. M., eds.), pp. 197–225. Oxford: Blackwell 1962

    Google Scholar 

  32. Rosenberg, L., Hellmann, W., Kleinschmidt, A. K.: Electron microscopic studies of proteoglycan aggregates from bovine articular cartilage. J. biol. Chem.250, 1877–1883 (1975)

    PubMed  Google Scholar 

  33. Sajdera, S. W., Hascall, V. C.: Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J. biol. Chem.244, 77–87 (1969)

    PubMed  Google Scholar 

  34. Sobel, A. E., Burger, M.: Calcification XIV. Investigation of the role of chondroitin sulfate in the calcifying mechanism. Proc. Soc. exp. Biol. (N.Y.)87, 7–12 (1954)

    Google Scholar 

  35. Steven, F. S., Knott, J., Jackson, D. S., Podrazky, V.: Collagen-proteinpolysaccharide interactions in human intervertebral disc. Biochim. biophys. Acta (Amst.)188, 307–318 (1969)

    Google Scholar 

  36. Tonna, E. A.: The cellular complement of the skeletal system studied autoradiographically with tritiated thymidine (H3TDR) during growth and aging. J. biophys. biochem. Cytol.9, 813–824 (1961)

    PubMed  Google Scholar 

  37. Vittur, F., Pugliarello, M. D., Bernard, B. de: Chemical modifications of cartilage matrix during endochondral calcification. Experientia (Basel)27, 126–127 (1971)

    Google Scholar 

  38. Wuthier, R. E.: A zonal analysis of inorganic and organic constituents of the epiphysis during endochondral calcification. Calcif. Tiss. Res.4, 20–38 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campo, R.D. Resistant proteoglycans in epiphyseal plate cartilage. Variations in their distribution in relationship to age and species. Calc. Tis Res. 22, 99–115 (1977). https://doi.org/10.1007/BF02010350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02010350

Key words

Navigation