Calcified Tissue Research

, Volume 8, Issue 1, pp 228–236 | Cite as

The mineralization of hair follicle tissue

I. Anin vivo study
  • E. I. F. Pearce
  • F. B. Cousins
  • A. C. Smillie
Original Papers


Previous histological investigations have shown that the hair follicle is particularly susceptible to mineralization when the skin of hypercalcaemic rats is injured. Direct chemical and X-ray diffraction analyses of follicle tissue have now confirmed this finding. As judged by increases in both calcium and phosphorus, mineral deposits began to form in hair follicle tissue 6–12 h after a mild crush injury to the skin of rats dosed with dihydrotachysterol (DHT), and 24–48 h after a similar injury to the skin of non-dosed rats. X-ray diffraction gave a diffuse apatite pattern. Within 3 h of injury there was a rise in the calcium content of follicle tissue which was not related to DHT-dosing and which was probably a reflection of calcium binding rather than mineral deposition.

Key words

Skin Calcinosis Keratin Chemistry X-ray diffraction 


Des études histologiques antérieures ont montré que le follicle pileux est particulièrement susceptible de se calcifier, lorsque la peau de rats hypercalcémiques est lésée. Des analyses chimiques et par diffraction aux rayons X du follicule ont confirmé ce résultat. — En se basant sur l'augmentation du calcium et du phosphore, les calcifications débutent dans le tissue folliculaire 6–12 h après une blessure d'intensité moyenne de la peau de rats, ayant reçu du dihydrotachysterol (DHT), et 24–48 h après une blessure similaire chez des rats non injectés. Les diagrammes de diffraction aux rayons X sont diffus. Trois heures après la blessure, on note une augmentation du calcium du tissu folliculaire qui ne semble pas en rapport avec le DHT qui traduit probablement une liaison de calcium plutôt qu'un dépot minéral.


Frühere histologische Untersuchungen haben gezeigt, daß der Haarfollikel besonders anfällig für Verkalkungen ist, wenn die Haut von hypercalcämischen Ratten verletzt wird. Dieses Resultat wurde nun durch direkte chemische Bestimmungen und Röntgendiffraktions-analysen von Follikelgewebe bestätigt. Aufgrund der erhöhten Calcium- und Phosphatwerte kann gesagt werden, daß nach einer leichten Quetschung der Haut von Ratten, die mit Dihydrotachysterol (DHT) behandelt wurden, im Haarfollikelgewebe nach 6–12 Std Mineral-ablagerungen stattfanden, wogegen Kontrollratten mit der gleichen leichten Hautverletzung diese Ablagerungen erst nach 24–48 Std zeigten. Röntgendiffraktionsanalysen ergaben ein diffuses Apatit-Muster. Innerhalb 3 Std nach der Verletzung wurde ein Anstieg des Calcium-gehaltes im Follikelgewebe beobachtet, der nicht im Zusammenhang mit der DHT-Behandlung stand, also nicht eine Mineralablagerung, sondern eher eine Bindung von Calcium widerspiegelte.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrnett, R. J.: The histochemical distribution of protein-bound sulfhydryl groups. J. nat Cancer Inst.13, 905–925 (1953).PubMedGoogle Scholar
  2. Baud, C. A., Dupont, D. H.: La structure submicroscopique des dépots de substance minérale dans la calcinose cutanée expérimentale (calciphylaxie). Experientia (Basel)22, 18–19 (1966).Google Scholar
  3. Belanger, L. F.: The entry of45Ca into the skin and other soft tissues of the rat: an autoradiographic and spodographic study. J. Histochem. Cytochem.5, 65–71 (1957).PubMedGoogle Scholar
  4. Bowness, J. M.: Present concepts of the role of ground substance in calcification. Clin. Orthop.59, 233–247 (1968).PubMedGoogle Scholar
  5. Butcher, E. O.: Restitutive growth in the hair follicle of the rat. Ann. N.Y. Acad. Sci.83, 369–377 (1959).PubMedGoogle Scholar
  6. Chen, P. S., Terepka, A. R., Overslaugh, C.: Hypercalcaemic and hyperphosphatemic actions of dihydrotachysterol, vitamin D2 and Hytakerol (A.T.10) in rats and dogs. Endocrinology70, 815 (1962).PubMedGoogle Scholar
  7. — Toribara, T. Y., Warner, H.: Microdetermination of phosphorus. Analyt. Chem.28, 1756–1758 (1956).Google Scholar
  8. Cornelius, C. D., Tenenhouse, A., Weber, J. C.: Calcinosis cutis. Metabolic, sweat, histochemical, X-ray diffraction and electron microscopic study. Arch. Derm.98, 219, 229 (1968).Google Scholar
  9. Cousins, F. B., Smillie, A. C.: Studies on a skin calcifying system. Aust. J. exp. Biol. med. Sci.43, 785–802 (1965).PubMedGoogle Scholar
  10. Eisenberg, E., Bartholow, P. V.: Reversible calcinosis cutis. Calciphylaxis in man. New Engl. J. Med.268, 1216–1220 (1963).Google Scholar
  11. Ellis, W. J.: Method for obtaining wool roots for histochemical examination. Nature (Lond.)162, 957 (1948).Google Scholar
  12. Fincham, A. G.: The natural mineralization of keratins. Thesis presented to the University of Leeds, England, for the degree Doctor of Philosophy (1966).Google Scholar
  13. Fischer, R. B.: The origin of nuclei in precipitation reactions. Analyt. chim. Acta22, 501–508 (1960).Google Scholar
  14. Forbis, R. Jr., Helwig, E. B.: Pilomatrixoma (calcifying epithelioma). Arch. Derm.83, 606–618 (1961).PubMedGoogle Scholar
  15. Gardner, D. L., Hall, T. A.: Electron microprobe analysis of sites of silver deposition in avian bone stained by the v. Kóssa technique. J. Path. Bact.98, 105–109 (1969).Google Scholar
  16. Glimcher, M. J., Krane, S. M.: The organization and structure of bone, and the mechanism of calcification. In: Treatise on collagen (G.N. Ramachandran, general ed.), vol. 2B, p. 67–251. London: Academic Press 1968.Google Scholar
  17. Grant, R. A., Gillman, T., Hathorn, M.: Prolonged chemical and histochemical changes associated with widespread calcification of soft tissues following brief acute calciferol intoxication. Brit. J. exp. Path.44, 202–232 (1963).Google Scholar
  18. Johnson, E.: Quantitative studies of hair growth in the albino rat. 1. Normal males and females. J. Endocr.16, 337–350 (1958).PubMedGoogle Scholar
  19. Johnson, W. C., Forbes, P. D., Graham, J. H., Gray, H. R.: Experimental cutaneous calcinosis: A histopathologic and histochemical study. J. invest. Derm.43, 453–466 (1964).PubMedGoogle Scholar
  20. Matoltsy, A. G.: Soluble prekeratin. In: Biology of the skin and hair growth (A. G. Lyne and B. F. Short, eds.), p. 291–305. Sidney: Angus and Robertson 1965.Google Scholar
  21. Mercer, E. H.: Some experiments on the orientation and hardening of keratin in the hair follicle. Biochim. biophys. Acta (Amst.)3, 161–169 (1949).Google Scholar
  22. Pautard, F. G. E.: Calcification of keratin. In: Progress in the biological sciences in relation to dermatology (A. Rook and R. H. Champion, eds.), vol. 2, p. 227–239. Cambridge: Cambridge University Press 1964.Google Scholar
  23. —: Calcification of baleen. In: Proc. Second European Symp. on Calcified Tissues (L. J. Richelle and M. J. Dallemagne, eds.), p. 347. Liège: L'Université de Liége 1965.Google Scholar
  24. Pearse, A. G. E.: Histochemistry. Theoretical and applied, 2nd ed., p. 934. London: Churchill 1960.Google Scholar
  25. Schibler, D., Fleisch, H.: Inhibition of skin calcification (calciphylaxis) by polyphosphates. Experientia (Basel)22, 367–373 (1966).Google Scholar
  26. Selye, H.: Calciphylaxis. Chicago: University of Chicago Press 1962.Google Scholar
  27. —, Jean, P., Veilleux, R.: Role of local trauma in production of cutaneous calcinosis by dihydrotachysterol. Proc. Soc. exp. Biol. (N.Y.)104, 409–411 (1960).Google Scholar
  28. Urist, M. R., Adams, J. H.: Effects of various blocking reagents upon local mechanism of calcification. Arch. Path.81, 325–342 (1966).PubMedGoogle Scholar
  29. Wolff, H. H.: Histochemical studies on experimental heterotopic calcification. Histochemie9, 354–366 (1967).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • E. I. F. Pearce
    • 1
  • F. B. Cousins
    • 1
  • A. C. Smillie
    • 1
  1. 1.Biochemical Research UnitUniversity of Otago Dental SchoolDunedinNew Zealand

Personalised recommendations