Acta Mathematicae Applicatae Sinica

, Volume 7, Issue 4, pp 354–362 | Cite as

Computation of a trust region step

  • Wu Shiquan 
  • Wu Fang 


The most time consuming work of the trust region method for unconstrained minimization is to compute a trust region step. This note tries to generalize the way of selecting a trust region and then to discuss how to compute a trust region step quickly.


Trust Region Math Application Region Method Region Step Trust Region Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.C. Sorensen, Nowton's Method with a Model Trust Region Modification,SIAM. J. Numer Anal.,19(2) (1982), 409–426.CrossRefGoogle Scholar
  2. [2]
    J.J. Moré and D.C. Sorensen, Computing a Trust Region Step,SIAM, J. Sci. Stat. Comput.,4(3) (1983), 553–572.Google Scholar
  3. [3]
    J.J. Moré, Recent Developments in Algorithms and Software for Trust Region Methods, in Mathematical Programming. The State of the art, Bonn, 1982, A. Bachem, M. Gröschel and B. Korte eds., Springer-Verlag.Google Scholar
  4. [4]
    M.D. Hebden, An Algorithm for Minimization Using Exact Second Derivatives, Atomic Energy Research Establishment, Report T.P. 515, Harewell, England, 1973.Google Scholar
  5. [5]
    N. Karmarkar, An Interior Point Approach to NP-Complete Problems (extended abstract), AT & T Bell Laboratories, Murray Hill, New Jersey 07974.Google Scholar
  6. [6]
    D.M. Gay, Computing Optimal Locally Constrained Step,SIAM. J. Sci. Stat. Comput.,2 (1981), 186–197.CrossRefGoogle Scholar
  7. [7]
    G.A. Shultz, R. B. Schnabel and R. H. Bryd, A Family of Trust-Region-Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties,SIAM. J. Numer. Anal.,22(1) (1985), 47–67.CrossRefGoogle Scholar
  8. [8]
    M.J.D. Powell, On the Global Convergence of Trust Region Algorithms for Unconstrained Minimization,Mathematical Programming,29 (1984), 297–303.Google Scholar
  9. [9]
    R.H. Byrd and R.B. Schnabel, Approximate Solution of the Trust Region Problem by Minimization over Two Dimensional Subspaces,Mathematical Programming,40 (1988), 247–263.CrossRefGoogle Scholar
  10. [10]
    C. Vande Panne, Methods for Linear and Quadratic Programming, Springer-Verlag, 1974.Google Scholar
  11. [11]
    R.K. Mecord, Minimization with One Linear Equality Constraint and Bounds on the Variables, Technical Report SOL 79–20, November 1977, Department of Operations Research, Stanford University.Google Scholar
  12. [12]
    P.E. Gill and W. Murray, Numerically Stable Methods for Quadratic Programming,Mathematical Programming,14(3) (1978), 349–372.CrossRefGoogle Scholar
  13. [13]
    P.M. Pardalos and N. Kovoor, An Algorithm for a Singly Constrained Class of Quadratic Programs Subject to Upper and Lower Bounds,Mathematical Programming,46 (1990), 321–328.CrossRefGoogle Scholar
  14. [14]
    Shiquan Wu, Restrict Step Size Method and its Extension,Acat Mathematicae Applicatae Sinica,12(1) (1989), 44–53 (in Chinese).Google Scholar
  15. [15]
    Shiquan Wu, Contribution à L'etude Numérique de Problémes D'optimisation, Thèse Doctorale, 1990, Université Paris I Pantheon-Sorbonne.Google Scholar

Copyright information

© Science Press, Beijing, China and Allerton Press, Inc., New York, U.S.A. 1991

Authors and Affiliations

  • Wu Shiquan 
    • 1
  • Wu Fang 
    • 1
  1. 1.Institute of Applied MathematicsAcademia SinicaBeijing

Personalised recommendations