Advertisement

Acta Mathematicae Applicatae Sinica

, Volume 12, Issue 1, pp 59–63 | Cite as

A complete solution of Hosoya's mystery

  • Zhang Fuji 
  • Chen Rongsi 
  • S. J. Cyvin
Article

Abstract

In this note a theorem concerning the coincidence between the characteristic polynomial of a cycle and the polynomial of Kekulé structure count of a primitive coronoid is presented which implies a complete solution of Hosoya's mystery.

Key words

Characteristic polynomial hydrocarbon matching polynomial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gutman I. and Cyvin S.J. Advances in the Theory of Benzenoid Hydrocarbons. Springer-Verlag, Berlin, 1990.Google Scholar
  2. [2]
    Graovac A., Gutman I. and Trinajstic N. Topological Approach to the Chemistry of Conjugated Molecules. Springer, Berlin, Heidelberg, New York, 1977.MATHGoogle Scholar
  3. [3]
    Cvetkovic D., Doob M. and Sachs H. Spectra of Graphs-Theory and Application. Academic Press, New York, 1980.Google Scholar
  4. [4]
    Trinajstic N. Chemical Graph Theory. Vols. I–II, CRC Press, Boca Raton, FL, 1983.Google Scholar
  5. [5]
    Farrell E.J. An Introduction to Matching Polynomials.J. Combin. Theory, 1979, B 27: 75–91.CrossRefMathSciNetGoogle Scholar
  6. [6]
    Staab H.A. and Diederich F. Cycloarenes—a New Class of Aromatic Compounds.Chem. Ber., 1983, 116: 3487–3497.Google Scholar
  7. [7]
    Staab H.A., Diederich F. et al. Molecular Structure and Spectroscopic Properties of Kekulene.Chem. Ber., 1983, 116: 3540–3561.Google Scholar
  8. [8]
    Staab H.A., Diederich F. and Caplar V. Cycloarenes—a New Class of Aromatic Compounds III.Liebigs Ann. Chem., 1983, 2262–2278.Google Scholar
  9. [9]
    Staab H.A. and Sauer M. Cyclearenes, eihe heue klass aromtischer verbindungen IV.Leibigs Ann. Chem., 1984, 742–760.Google Scholar
  10. [10]
    Funhoff D.J.H. and Staab H.A. Cyclo [d.e.d.e.e.d.e.d.e.e.] Deckisbenzene, a New Cycloarene.Angew. Chem., Int Ed Engl, 1986, 25: 742–758.Google Scholar
  11. [11]
    Bergan J.L., Cyvin B.N. and Cyvin S.J. The Fibonacci Numbers and Kekulé Structure of Some Corona-condensed Benzenoids.Acta Chem. Hung, 1987, 124: 229–240.Google Scholar
  12. [12]
    Hosoya H. Matching and Symmetry of Graphs.Comp. and Maths, Aplls., 1986, 12B: 271–290.MathSciNetGoogle Scholar
  13. [13]
    Cyvin, S.J. Resolution of Hosoya's Mystery.Bull. Chem. Soc. Jpn., 1988, 61: 4445–4446.Google Scholar
  14. [14]
    Hosoya H. and Yamaguchi T. Sextet Polynomial. Tetrahedron Letters: 4659–4672.Google Scholar
  15. [15]
    Biggs N. Algebraic Graph Theory. Cambridge Univ. Press, 1974.Google Scholar
  16. [16]
    Zhang F.J., Cyvin S.J. and Cyvin B.N. ”Crown” and Aromatic Sextets in Primitive Coronoid Hydrocarbons.Monatshefte für Chemie., 1990, 121: 421–432.CrossRefGoogle Scholar
  17. [17]
    Ohkami N. Graph Theoretical Analysis of the Sextet Polynomial.J. Math. Chem., 1990, 5: 23–42.CrossRefMathSciNetGoogle Scholar

Copyright information

© Science Press, Beijing, China and Allerton Press, Inc. New York, U.S.A. 1996

Authors and Affiliations

  • Zhang Fuji 
    • 1
  • Chen Rongsi 
    • 2
  • S. J. Cyvin
    • 3
  1. 1.Department of MathematicsXiamen UniversityXiamenChina
  2. 2.College of Finance and EconomicsFuzhou UniversityFuzhouChina
  3. 3.Division of Physical Chemistrythe University of TrondheimTrondheim-NTHNorway

Personalised recommendations