Journal of Insect Behavior

, Volume 8, Issue 6, pp 763–779 | Cite as

How locusts separate pattern flow into its rotatory and translatory components (Orthoptera: Acrididae)

  • R. Preiss
  • P. Spork


The ability of desert locusts,Schistocerca gregaria, to separate pattern flow within the lateral visual fields into its rotatory and translatory components was studied in tethered flight under open-loop conditions. The optomotor turning behavior results from the sum of compensatory steering and upwind/downwind turning induced by the rotatory and translatory component of pattern flow, respectively. Thereby, the analysis of the visual stimulus is supposedly achieved by linear binocular interaction, i.e., by summation and subtraction of the optomotor effectiveness of the pattern flow on either side. Our results indicate that, in addition, locusts take into account the relative contribution of the rotatory and the translatory stimulus component to the sum total of pattern flow. This yields a factor which modifies the gain of the control loop of either of the response components to give a nonlinear response. It results in a weakening of the behavior upon stimuli composed of rotatory and translatory components. We discuss our results as an adaptation by which an animal avoids inappropriate behavior upon ambiguous stimulus situations.

Key words

locust optomotor flight control visual orientation flow field gain control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman, J. S. (1983). Sensory inputs and the generation of the locust flight motor pattern: from the past to the future. In Nachtigall, W. (ed.),Biona Report 2, Fischer, Stuttgart New York, pp. 127–136.Google Scholar
  2. Arbas, E. A. (1986). Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight.J. Comp. Physiol. A 159 849–857.PubMedGoogle Scholar
  3. Baker, P. S. (1979). Flying locust visual responses in a radial wind tunnel.J. Comp. Physiol. 131 39–47.Google Scholar
  4. Camhi, J. M. (1969). Locust wind receptors. I. Transducer mechanics and sensory response.J. Exp. Biol. 50 335–348.PubMedGoogle Scholar
  5. Collett, T. S. (1980). Some operating rules for the optomotor system of a hoverfly during voluntary flight.J. Comp. Physiol. 138 271–282.Google Scholar
  6. Egelhaaf, M., and Borst, A. (1993). A look into the cockpit of the fly: Visual orientation, algorithms, and identified neurons.J. Neurosci. 13 4563–4574.PubMedGoogle Scholar
  7. Eggers, A., Preiss, R., and Gewecke, M. (1991). The optomotor yaw response of the desert locust,Schistocerca gregaria.Physiol. Entomol. 16 411–418.Google Scholar
  8. De Talens, A. F. P., and Taddei-Ferretti, C. (1975). Landing and optomotor response of the flyMusca. In Horridge, G. A. (ed.),The Compound Eye and Vision of Insects, Clarendon Press, Oxford, pp. 490–501.Google Scholar
  9. Gewecke, M. (1972). Antennen und Stirn-Scheitelhaare vonLocusta migratoria L. als Luftströmungs-Sinnesorgane bei der Flugsteuerung.J. Comp. Physiol. 80 57–94.Google Scholar
  10. Gibson, J. J. (1979).The Ecological Approach to Visual Perception, Houghton Mifflin, Boston.Google Scholar
  11. Götz, K. G. (1973). Visual control of locomotion in the walking fruitflyDrosophila.J. Comp. Physiol. 85 235–266.Google Scholar
  12. Götz, K. G. (1975). The optomotor equilibrium of theDrosophila navigation system.J. Comp. Physiol. 99 187–210.Google Scholar
  13. Götz, K. G. (1980). Visual guidance inDrosophila. In Siddiqi, O., Babu, P., Hall, L. M., and Hall, J. C. (eds.),Development and Neurobiology of Drosophila, Plenum, New York, pp. 391–407.Google Scholar
  14. Heisenberg, M., and Wolf, R. (1984). Vision inDrosophila. Genetics of microbehavior. In Braitenberg, V. (ed.),Studies of Brain Function, Vol. XII, Springer, Berlin/Heidelberg/New York.Google Scholar
  15. Hensler, K. (1989). Corrective flight steering in locusts: convergence of extero-and proprioceptive inputs in descending deviation detectors. In Singh, R. N., and Strausfeld, N. J. (eds.),Neurobiology of Sensory Systems, Plenum, New York, London, pp. 531–554.Google Scholar
  16. Junger, W., and Dahmen, H. J. (1991). Response to self-motion in waterstriders: Visual discrimination between rotation and translation.J. Comp. Physiol. A 169 641–646.Google Scholar
  17. Kalmus, H. (1964). Animals as mathematicians.Nature 202 1156–1160.PubMedGoogle Scholar
  18. Nalbach, H.-O., Thier, P., and Varjú, D. (1993). Binocular interaction in the optokinetic system of the crabCarcinus maenas (L.): Optokinetic gain modified by bilateral image flow.Visual Neurosci. 10 873–885.Google Scholar
  19. Pflüger, H.-J., and Tautz, J. (1982). Air movement sensitive hairs and interneurons inLocusta migratoria.J. Comp. Physiol. 145 369–380.Google Scholar
  20. Preiss, R. (1992). Set point of retinal velocity of ground images in the control of swarming flight of desert locusts.J. Comp. Physiol. A 171 251–256.Google Scholar
  21. Preiss, R., and Gewecke, M. (1991). Compensation of visually simulated wind drift in the swarming flight of the desert locust (Schistocerca gregaria).J. Exp. Biol. 157 461–481.Google Scholar
  22. Preiss, R., and Spork, P. (1993). Flight-phase and visual-field related optomotor yaw responses in gregarious desert locusts during tethered flight.J. Comp. Physiol. A 172 733–740.Google Scholar
  23. Preiss, R., and Spork, P. (1994). Significance of reafferent information on yaw rotation in the visual control of translatory flight maneuvers in locusts.Naturwissenschaften 81 38–40.Google Scholar
  24. Reichardt, W. (1963). Movement perception in insects. In Reichardt, W. (ed.),Processing of Optical Data by Organisms and Machines, Rendiconte SIF Course XLIII, Academic Press, London, pp. 465–493.Google Scholar
  25. Reichardt, W., and Poggio, T. (1976). Visual control of orientation behaviour in the fly. Part I. A quantitative analysis.Q. Rev. Biophys. 9 311–375.PubMedGoogle Scholar
  26. Reichert, H. (1993). Sensory inputs and flight orientation in locusts.Comp. Biochem. Physiol. 104A 647–657.Google Scholar
  27. Robert, D. (1988). Visual steering under closed-loop conditions by flying locusts: Flexibility of optomotor response and mechanisms of correctional steering.J. Comp. Physiol. A 164 15–24.Google Scholar
  28. Rowell, C. H. F. (1988). Mechanisms of flight steering in locusts.Experientia 44 389–395.Google Scholar
  29. Scharstein, H. (1989). A universal projector for optomotor stimulation. In Elsner, N., and Singer, W. (eds.),Dynamics and Plasticity in Neuronal Systems, Thieme, Stuttgart/New York, Abstr. 116.Google Scholar
  30. Spork, P., and Preiss, R. (1993). Control of flight by means of lateral visual stimuli in gregarious desert locusts,Schistocerca gregaria.Physiol. Entomol. 18 195–203.Google Scholar
  31. Spork, P., and Preiss, R. (1994). Adjustment of flight speed of gregarious desert locusts (Orthoptera: Acrididae) flying side by side.J. Insect. Behav. 7 217–232.Google Scholar
  32. Taddei-Feretti, C., and De Talens, A. F. P. (1973). Landing reaction ofMusca domestica. IV. Monocular and binocular vision; B. Relationships between landing and optomotor reactions.Z. Naturforsch. 28c 579–592.Google Scholar
  33. Wehner, R. (1981). Spatial vision in arthropods. In Autrum, H.-J. (ed.),Comparative Physiology and Evolution of Vision in Invertebrates. Handbook of Sensory Physiology, Vol. VII/6c, Springer, Berlin, pp. 287–616.Google Scholar
  34. Weis-Fogh, T. (1949). An aerodynamic sense organ stimulating and regulating flight in locusts.Nature 163 873–874.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • R. Preiss
    • 1
  • P. Spork
    • 1
  1. 1.Zoologisches InstitutUniversität HamburgHamburgFederal Republic of Germany

Personalised recommendations