The Journal of Membrane Biology

, Volume 105, Issue 2, pp 165–175 | Cite as

Stimulation of intestinal Na+/d-glucose cotransport by monoclonal antibodies

  • Konrad Honold
  • Barbara Ludeke
  • Hans Hengartner
  • Giorgio Semenza


The small intestinal brush border membrane is endowed with a number of transport systems. Monoclonal antibodies were produced against integral membrane proteins and tested for their ability to bind to such membranes. For this purpose papain-digested, deoxycholate-extracted BBMVs from rabbit small intestine were used to immunize mice. Of the 765 hybridoma supernatants tested, 119 gave a significantly higher extent of binding to the crude antigen preparation as compared with the background. The monoclonal antibodies were also tested for their ability to influence the sodium-dependent uptake of solutes into intact BBMVs. Two monoclonal antibodies clearly showed stimulation of secondary actived-glucose transport, whereas sodium-dependent uptake ofl-alanine andl-proline was not affected. Hydrophobically labeled, i.e. intrinsic, membrane proteins of 175, 78 and 65 kilodaltons could be immunoprecipitated by both monoclonal antibodies, the 78 kDa band corresponding in all likelihood to the Na+/glucose cotransporter.

Key Words

brush border membranes sodium-dependent cotransport monoclonal antibodies immunoprecipitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard, W.J., Lienhard, G.E. 1985. Monoclonal antibodies to the glucose transporter from human erythrocytes.J. Biol. Chem. 260:8668–8675PubMedGoogle Scholar
  2. Booth, A.G., Kenny, A.J. 1974. A rapid method for the preparation of microvilli from rabbit kidney.Biochem. J. 142:575–581PubMedGoogle Scholar
  3. Boyle, J.M., Whetton, A.D., Dexter, T.M., Meeran, K., Baldwin, S.A. 1985. Characterisation of monoclonal antibodies which specifically recognise the human erythrocyte glucose transport protein.EMBO J. 4:3093–3098PubMedGoogle Scholar
  4. Brunner, J., Semenza, G. 1981. Selective labeling of the hydrophobic core of membranes with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a carbene-generating reagent.Biochemistry 20:7174–7182CrossRefPubMedGoogle Scholar
  5. Carlsen, J., Christiansen, K., Bro, B. 1983. Purification of microvillus membrane vesicles from pig small intestine by adsorption chromatography on sepharose.Biochim. Biophys. Acta 727:412–415PubMedGoogle Scholar
  6. Carrasco, N., Viitanen, P., Herzlinger, D.J., Kaback, H.R. 1984. Monoclonal antibodies againstlac carrier protein fromEscherichia coli. 1. Functional studies.Biochemistry 23:3681–3687CrossRefPubMedGoogle Scholar
  7. Chamat, S., Hoebeke, J., Emorine, L., Guillet, J.G., Strosberg, A.D. 1986. The immune response towards β-adrenergic ligands and their receptors. VI. Idiotype of monoclonal antialprenolol antibodies.J. Immunol. 136:3805–3811PubMedGoogle Scholar
  8. De St. Groth, F., Scheidegger, D. 1980. Production of monoclonal antibodies: Strategy and tactics.J. Immunol. Meth. 35:1–21CrossRefGoogle Scholar
  9. Franzusoff, A.J., Cirillo, V.P. 1983. Glucose transporter activity in isolated plasma membrane vesicles fromSaccharomyces cerevisiae.J. Biol. Chem. 258:3608–3614PubMedGoogle Scholar
  10. Galfré, G., Howe, S.C., Milstein, C., Butcher, G.W., Howard, J.C. 1977. Antibodies to major histocompatibility antigens produced by hybrid cell lines.Nature (London) 266:550–552CrossRefGoogle Scholar
  11. Galfré, G., Milstein, C. 1981. Preparation of monoclonal antibodies: Strategies and procedures.Methods Enzymol. 73:3–46PubMedGoogle Scholar
  12. Hauser, H., Howell, K., Dawson, R.M.C., Bowyer, D.E. 1980. Rabbit small intestinal brush border membrane preparation and lipid composition.Biochim. Biophys. Acta 602:567–577PubMedGoogle Scholar
  13. Hediger, A.M., Coady, M.J., Ikeda, T.S., Wright, E.M. 1987. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter.Nature (London) 330:379–381CrossRefGoogle Scholar
  14. Hosang, M., Gibbs, E.M., Diedrich, D.F., Semenza, G. 1981. Photoaffinity labeling and identification of (a component of) the small-intestinal Na+,d-glucose transporter using 4-azidophlorizin.FEBS Lett. 130:244–248CrossRefPubMedGoogle Scholar
  15. Kearney, J.F., Radbruch, A., Liesegang, B., Rajewsky, K. 1979. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines.J. Immunol. 123:1548–1550PubMedGoogle Scholar
  16. Kessler, M., Acuto, O., Storelli, C., Murer, H., Müller, M., Semenza, G. 1978a. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties ofd-glucose and choline transport systems.Biochim. Biophys. Acta 506:136–154PubMedGoogle Scholar
  17. Kessler, M., Semenza, G. 1983. The small-intestinal Na+,d-glucose cotransporter: An asymmetric gated channel (or pore) responsive to ΔΨ.J. Membrane Biol. 75:27–56CrossRefGoogle Scholar
  18. Kessler, M., Tannenbaum, V., Tannenbaum, C. 1978b. A simple apparatus for performing short-time (1–2 seconds) uptake measurements in small volumes: Its application tod-glucose transport studies in brush border vesicles from rabbit jejunum and ileum.Biochim. Biophys. Acta 509:348–359PubMedGoogle Scholar
  19. Klip, A., Grinstein, S., Biber, J., Semenza, G. 1980. Interaction of the sugar carrier of intestinal brush border membranes with HgCl2.Biochim. Biophys. Acta 598:100–114PubMedGoogle Scholar
  20. Klip, A., Grinstein, S., Semenza, G. 1979a. Partial purification of the sugar carrier of intestinal brush border membranes. Enrichment of the phlorizin-binding component by selective extractions.J. Membrane Biol. 51:47–73CrossRefGoogle Scholar
  21. Klip, A., Grinstein, S., Semenza, G. 1979b. Distribution of the sulfhydryl groups in intestinal brush border membranes. Localization of side-chains essential for glucose transport and phlorizin binding.Biochim. Biophys. Acta 558:233–245PubMedGoogle Scholar
  22. Klip, A., Grinstein, S., Semenza, G. 1979c. Transmembrane disposition of the phlorizin binding protein of intestinal brush borders.FEBS Lett. 99:91–96PubMedGoogle Scholar
  23. Koepsell, H., Menuhr, H., Ducis, I., Wissmüller, T.F. 1983. Partial purification and reconstitution of the Na+-d-glucose cotransporter from pig renal proximal tubules.J. Biol. Chem. 258:1888–1894PubMedGoogle Scholar
  24. Koepsell, H., Neeb, M., Madrala, A. 1986. The renald-glucose/sodium symporter: Attempts at identification, isolation and reconstitution.In: Ion Gradient Coupled Transport. F. Alvarado and C.H. Van Os, editors. INSERM Symp. No. 26, pp. 117–125. Elsevier, New YorkGoogle Scholar
  25. Laemmli, U.K. 1970. Cleavage of structure proteins during assembly of the head of bacteriophage T4.Nature (London) 227:680–685CrossRefGoogle Scholar
  26. Lin, J.T., Szwarc, K., Kinne, R., Jung, C.Y. 1984. Structural state of the Na+/d-glucose cotransporter in kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependentd-glucose transport.Biochim. Biophys. Acta 777:201–208PubMedGoogle Scholar
  27. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with Folin phenol reagent.J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  28. Malathi, P., Preiser, H. 1983. Isolation of the Na+-dependentd-glucose transport protein from brush-border membranes.Biochim. Biophys. Acta 735:314–324PubMedGoogle Scholar
  29. Malathi, P., Preiser, H., Crane, R.K. 1980. Protease-resistant integral brush border membrane proteins and their relationship to sodium-dependent transport ofd-glucose andl-alanine.Ann. N.Y. Acad. Sci. 358:253–266PubMedGoogle Scholar
  30. Mol, J.A., Krenning, E.P., Docter, R., Rozing, J., Hennemann, G. 1986. Inhibition of iodothyronine transport into rat liver cells by a monoclonal antibody.J. Biol. Chem. 261:7640–7643PubMedGoogle Scholar
  31. Neeb, M., Kunz, U., Koepsell, H. 1987. Identification ofd-glucose-binding polypeptides which are components of the renal Na+-d-glucose cotransporter.J. Biol. Chem. 262:10718–10727PubMedGoogle Scholar
  32. Pecht, I., Corcia, A., Liuzzi, M.P.T., Alcover, A., Reinherz, E.G. 1987. Ion channels activated by specific Ti or T3 antibodies in plasma membranes of human T cells.EMBO J. 6:1935–1939PubMedGoogle Scholar
  33. Peerce, B.E., Wright, E.M. 1984a. Sodium-induced conformational changes in the glucose transporter of intestinal brush borders.J. Biol. Chem. 259:14105–14112PubMedGoogle Scholar
  34. Peerce, B.E., Wright, E.M. 1984b. Conformational changes in the intestinal brush border sodium-glucose contransporter labeled with fluorescein isothiocyanate.Proc. Natl. Acad. Sci. USA 81:2223–2226PubMedGoogle Scholar
  35. Peerce, B.E., Wright, E.M. 1987. Examination of the Na+-induced conformational change of the intestinal brush border sodium/glucose symporter using fluorescent probes.Biochemistry 26:4272–4279CrossRefPubMedGoogle Scholar
  36. Ritchie, D.G., Nickerson, J.M., Fuller, G.M. 1983. Two simple programs for the analysis of data from Enzyme-Linked Immunosorbent Assay (ELISA) on a programmable desk-top calculator.Methods Enzymol. 92:577–589PubMedGoogle Scholar
  37. Sawutz, D.G., Sylvestre, D., Homcy, C.J. 1987. Enhanced antigen-antibody binding affinity mediated by an anti-idiotypic antibody.J. Immunol. 135:2713–2718Google Scholar
  38. Schmidt, U., Eddy, B., Fraser, C.M., Venter, J.C., Semenza, G. 1983. Isolation of (a subunit of) the Na+/d-glucose cotransporter(s) of rabbit intestinal brush border membranes using monoclonal antibodies.FEBS Lett. 161:279–283CrossRefPubMedGoogle Scholar
  39. Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J., Crane, R.K. 1973. Purification of the human intestinal brush border membrane.Biochim. Biophys. Acta 323:98–112PubMedGoogle Scholar
  40. Semenza, G., Kessler, M., Hosang, M., Weber, J., Schmidt, U. 1984. Biochemistry of the Na+,d-glucose cotransporter of the small-intestinal brush-border membrane.Biochim. Biophys. Acta 779:343–379PubMedGoogle Scholar
  41. Silverman, M., Speight, P. 1986. Isolation and partial purification of Na+-dependent phlorizin receptor from dog kidney proximal tubule.J. Biol. Chem. 261:13820–13826PubMedGoogle Scholar
  42. Spiess, M., Brunner, J., Semenza, G. 1982. Hydrophobic labeling, isolation, and partial characterization of the NH2-terminal membranous segment of sucrase-isomaltase complex.J. Biol. Chem. 257:2370–2377PubMedGoogle Scholar
  43. Tannenbaum, C., Toggenburger, G., Kessler, M., Rothstein, A., Semenza, G. 1977. High affinity phlorizin binding to brush border membranes from small intestine: Identity with (a part of) the glucose transport system, dependence on the Na+-gradient, partial purification.J. Supramol. Struct. 6:519–533PubMedGoogle Scholar
  44. Toggenburger, G., Kessler, M., Rothstein, A., Semenza, G., Tannenbaum, C. 1978. Similarity in effects of Na+ gradients and membrane potentials ond-glucose transport by, and phlorizin binding to, vesicles derived from brush border rabbit intestinal mucosal cells.J. Membrane Biol. 40:269–290CrossRefGoogle Scholar
  45. Turner, R.J., Kempner, E.S. 1982. Radiation inactivation studies of the renal brush-border membrane phlorizin-binding protein.J. Biol. Chem. 257:10794–10797PubMedGoogle Scholar
  46. Turner, R.J., Moran, A. 1982. Further studies of proximal tubular brush border membraned-glucose transport heterogeneity.J. Membrane Biol. 70:37–45CrossRefGoogle Scholar
  47. Wu, J.S.R., Lever, J.E. 1987a. Monoclonal antibodies that bind the renal Na+/glucose symport system. 1. Identification.Biochemistry 26:5783–5790PubMedGoogle Scholar
  48. Wu, J.S.R., Lever, J.E. 1987b. Monoclonal antibodies that bind the renal Na+/glucose symport system. 2. Stabilization of an active conformation.Biochemistry 26:5790–5796CrossRefPubMedGoogle Scholar
  49. Wu, J.S.R., Lever, J.E. 1987c. Purification and reconstitution of a 75-kilodalton protein identified as a component of the renal Na+/glucose symporter.Biochemistry 26:5958–5962CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1988

Authors and Affiliations

  • Konrad Honold
    • 1
  • Barbara Ludeke
    • 1
  • Hans Hengartner
    • 2
  • Giorgio Semenza
    • 1
  1. 1.Laboratory for Biochemistry of the ETHETH-ZentrumZürichSwitzerland
  2. 2.Institute for Pathology, Department of Experimental PathologyUniversity Hospital of ZürichZürichSwitzerland

Personalised recommendations