Advertisement

Flügelschwingungsformen in ebener kompressibler Potentialströmung

  • Nikolaus Rott
Originalarbeiten

Summary

On the basis of energy considerations a survey is given of the possible forms of oscillations for flutter with two degrees of freedom in a plane compressible potential flow. It is found that the possible forms do not much depend on Mach Number in the whole range from 0 to ∞, with some exceptions in the neighbourhood ofM=1, where forms with only one degree of freedom (pure torsion) may occur. Conclusions are drawn for methods of preventing flutter. Limits of the reduced frequency (depending onM) are given for the possibility of flutter in two and one degree of freedom.

Special care was given to the caseM=1, for which analytical expressions and numerical values of the derivatives are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. 1.
    R. Kassner undH. Fingado,Das ebene Problem der Flügelschwingung, Luftfahrtforschung13, 374–387 (1936).Google Scholar
  2. 2.
    J. H. Greidanus,De arbeid, die de luchtkrachten per tijdseenheid op een trillende vleugel verrichten, Rap. V. 1237, Nationaal Luchtvaartlaboratorium, Amsterdam 1940.— Vgl. auch vom gleichen Autor:Low-Speed Flutter, J. aeron. Sci.16, 127 (1949).Google Scholar
  3. 3.
    M. V. Barton,Stability of an Oscillating Airfoil in Supersonic Airflow, J. aeron. Sci.15, 371–376 (1948).Google Scholar
  4. 4.
    F. Dietze,Die Luftkräfte des harmonisch schwingenden Flügels im kompressiblen Medium bei Unterschallgeschwindigkeit, Dtsch. Luftfahrtforsch. Zentr. wiss. Ber.-Wes. Forsch.-Ber. 1733 (1943).Google Scholar
  5. 5.
    C. Possio,L'azione aerodinamica sul profilo oscillante alle velocità ultrasonore, Acta Pontif. Acad. Sci.1, 93–106 (1937).Google Scholar
  6. 6.
    S. v. Borbély,Über die Luftkräfte, die auf eien harmonisch schwingenden zweidimensionalen Flügel bei Überschallgeschwindigkeit wirken, Z. angew. Math. Mech.22, 190–205 (1942).Google Scholar
  7. 7.
    L. Schwarz,Ebene instationäre Theorie der Tragfläche bei Überschallgeschwindigkeit, Jb. dtsch. Luftfahrtforsch. I A 010, S. 1–8 (1943).Google Scholar
  8. 8.
    H. Hönl,Zweidimensionale Tragflächentheorie im Überschall, Dtsch. Luftfahrtforsch. Zentr. wiss. Ber.-Wes. Forsch.-Ber. 1903 (1944).Google Scholar
  9. 9.
    G. Temple undH. A. Jahn,Flutter at Supersonic Speeds: Derivative Coefficients for a Thin Aerofoil at Zero Incidence, R. & M. Nr. 2140 (1945).Google Scholar
  10. 10.
    I. E. Garrick undS. I. Rubinow,Flutter and Oscillating Air-Force Calculations for an Airfoil in a Two-Dimensional Supersonic Flow, NACA Rep. Nr. 846 (1946).Google Scholar
  11. 11.
    J. W. Miles,The Aerodynamic Forces on an Oscillating Airfoil at Supersonic Speeds, J. aeron. Sci.14, 351–358 (1947).Google Scholar
  12. 12.
    A. R. Collar,Resistance Derivatives of Flutter Theory, Part II, R. & M. Nr. 2139 (1944).Google Scholar
  13. 13.
    N. Rott,Oscillating Airfoils at Mach Number 1, J. aeron. Sci.16, 380 (1949).Google Scholar
  14. 14.
    L. Schwarz,Untersuchung einiger mit den Zylinderfunktionen nullter Ordnung verwandter Funktionen, Luftfahrtforschung20, 341–372 (1943).Google Scholar
  15. 15.
    C. C. Lin, E. Reissner undH. S. Tsien,On Two-Dimensional Non-Steady Motion of a Slender Body in a Compressible Fluid, J. Math. Phys.27, 220–231 (1948).Google Scholar
  16. 16.
    W. J. Duncan,The Fundamentals of Flutter, Aircraft Eng.17, 16–32 (1945).— Vgl. auch vom gleichen Autor.Flutter and Stability, J. Roy. aeron. Soc.53, 529–549 (1949).Google Scholar
  17. 17.
    R. Sauer,Elementare Theorie des langsam schwingenden Überschallflügels, ZAMP1, 248–253 (1950).Google Scholar
  18. 18.
    M. A. Heaslet, H. Lomax undJ. R. Spreiter,Linearized Compressible Flow Theory for Sonic Flight Speeds, NACA TN Nr. 1824 (1949).Google Scholar

Copyright information

© Birkhäuser-Verlag 1950

Authors and Affiliations

  • Nikolaus Rott
    • 1
  1. 1.Institut für AerodynamikETHZürich

Personalised recommendations