Advertisement

Calcified Tissue Research

, Volume 16, Issue 1, pp 261–275 | Cite as

Density gradient fractionation of dentine and bone powder

  • Bengt Engfeldt
  • Anders Hjerpe
Original Papers

Abstract

In order to obtain enough material to analyse the organic matrix of mineralizing tissue a technique for preparative separation according to the degree of mineralization was developed. The method employs ultracentrifugation of powdered material in density gradients made from acetone and bromoform. The density range of the fractions is checked by refractive index measurements of the gradient medium. The amount of the material in the fractions is checked by weighing and their degree of mineralization is estimated by determining the Ca/N and P/N ratios. The homogeneity of the fractions is determined by soft X-ray microscopy. Isolated dissected microscopic bone structure (osteones and lamellar bone fragments) with different degrees of mineralization were fractionated in this way. Chromatography on Sepharose 2B of proteoglycans from costal cartilage exposed to an acetone-bromoform gradient revealed no effect of the gradient medium on the molecular size of the proteoglycans.

Key words

Dentine Bone Mineralization Density gradient fractionation Proteoglycans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amprino, R., Engström, A.: Studies on x-ray absorption and diffraction of bone tissue. Acta anat. (Basel)15, 1–22 (1952)Google Scholar
  2. Antonopoulos, C. A., Axelsson, I., Heinegård, D., Gardell, S.: Extraction and purification of proteoglycans from various types of connective tissue. Biochim. biophys. Acta (Amst.)338, 108–119 (1974)Google Scholar
  3. Antonopoulos, C. A., Gardell, S., Szirmai, J. A., Tyssonsk, E. R. de: Determination of glycosaminoglycans (mucopolysaccharides) from tissue on the microgram scale. Biochim. biophys. Acta (Amst.)83, 1–19 (1964)Google Scholar
  4. Ascenzi, A., Bonucci, E.: The compressive properties of single osteones. Anat. Rec.161, 377–392 (1968)CrossRefPubMedGoogle Scholar
  5. Britten, R. J., Roberts, R. B.: High resolution density gradient sedimentation analysis. Science131, 32–33 (1960)Google Scholar
  6. Coklica, V., Brudevold, F.: Density fraction in human enamel. Arch. oral Biol.11, 1261–1268 (1966)CrossRefPubMedGoogle Scholar
  7. Darling, A. I., Mortimer, K. V., Poole, D. F. G., Ollis, W. D.: Molecular sieve behaviour of normal and carious human dental enamel. Arch. oral Biol.5, 251–273 (1961)CrossRefPubMedGoogle Scholar
  8. Elson, L. A., Morgan, W. T. J.: A colorimetric method for the determination of glucosamine and chondrosamine. Biochem. J.5, 251–273 (1933)Google Scholar
  9. Engfeldt, B., Hjerpe, A.: Glycosaminoglycans of dentine and predentine. Calcif. Tiss. Res.10, 152–159 (1972)CrossRefGoogle Scholar
  10. Engström, A., Lindström, B.: A method for the determination of the mass of extremely small biological objects. Biochim. biophys. Acta (Amst.)4, 351–373 (1950)CrossRefGoogle Scholar
  11. Fincham, A. G.: The density fractionation of hard tissues; the application of the “Coulter Counter” to the densityvolume distribution of dried bone powders. Calcif. Tiss. Res.3, 327–339 (1969)Google Scholar
  12. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951)PubMedGoogle Scholar
  13. Manly, R. S., Hodge, H. C., Ange, L. E.: Density and refractive index studies of dental hard tissues. II. Density distribution curves. J. dent. Res.18, 203–211 (1939)Google Scholar
  14. Moore, S., Stein, W. H.: Photometric ninhydrin method for use in the chromatography of amino acids. J. biol. Chem.176, 367–388 (1948)Google Scholar
  15. Pugliarello, M. C., Vittur, F., Bernard, B. de, Bonucci, E., Ascenzi, A.: Chemical modifications in osteones during calcifraction. Calcif. Tiss. Res.5, 108–114 (1970)CrossRefGoogle Scholar
  16. Richelle, L. J.: One possible solution to the problem of the biochemistry of bone mineral. Clin. Orthop.33, 211–219 (1964)PubMedGoogle Scholar
  17. Sajdera, S. W., Hascall, V. C.: Proteinpolysaccharide complex from bovine nasal cartilage. J. biol. Chem.244, 77–87 (1969)PubMedGoogle Scholar
  18. Shapiro, I. M., Hartles, R. L.: An improved method with low material loss for the separation of teeth into fractions of differeing density. Arch. oral Biol.10, 155–159 (1965)CrossRefPubMedGoogle Scholar
  19. Strandh, J.: Microchemical studies on single Haversian systems. I. Methodological considerations with special reference to variations in mineral content. Exp. Cell Res.19, 515–530 (1960a)CrossRefGoogle Scholar
  20. Strandh, J.: Microchemical studies on single Haversian systems II. Methodological considerations with special reference to the Ca/P ratio in microscopic bone structures. Exp. Cell Res.21, 406–413 (1960b)CrossRefGoogle Scholar
  21. Youngburg, G. E., Youngburg, M. V.: Phosphorus metabolism. I. A system of blood phosphorous analysis. J. Lab. clin. Med.16, 158–166 (1930)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Bengt Engfeldt
    • 1
  • Anders Hjerpe
    • 1
  1. 1.Department of Pathology IIKarolinska InstitutetStockholm

Personalised recommendations