Calcified Tissue Research

, Volume 16, Issue 1, pp 157–162 | Cite as

The effect of thyroid hormone on calcium-induced nephrocalcinosis in the jird (Meriones unguiculatus)

  • Raymond J. Newman
Original Papers


Meriones unguiculatus (jirds or ‘gerbils’) were rendered hypo- or hyperthyroid by the addition of carbimazole or liothyronine to their diet, and in each of these states were found to be highly susceptible to the nephrotoxic effects of calcium gluconate. Histological studies showed that the pattern of induced nephrocalcinosis was the same in the hypo-, hyper- and eu-thyroid animals and was in the form of calcium deposits both within the cells of the proximal and distal convoluted tubules and in the basement membranes around such tubules.

In view of these findings analysis of thyroid function should perhaps be incorporated into the list of diagnostic procedures used in the investigation of patients with nephrocalcinosis and nephrolithiasis.

Key words

Hypothyroidism Hyperthyroidism Nephrocalcinosis Calcium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, R., Reaven, G., Sawyer, J.: Ground substance and calcification-influence of dye binding on nephrocalcinosis. J. Urol. (Baltimore)71, 511–522 (1954).Google Scholar
  2. Clark, F., Brown, H. J.: Free thyroxine index. Brit. med. J. II, 543 (1970a)Google Scholar
  3. Clark, F., Brown, H. J.: Free thyroxine index. Brit. med. J. II, 672 (1970b)Google Scholar
  4. Clark, F., Brown, H. J.: Evaluation of Thyopac-3 test in thein vitro assessment of thyroid function. Brit. med. J.I, 713–715 (1970c)Google Scholar
  5. Fourman, J.: Two distinct forms of experimental nephrocalcinosis in the rat. Brit. J. exp. Path.40, 464–473 (1959).PubMedGoogle Scholar
  6. Grimes, W. A.: Phase contrast study of mechanisms of renal calcification. J. Urol. (Baltimore)78, 553–574 (1957)Google Scholar
  7. Kepner, B. L., Hercules, D. M.: Fluorimetric determination of calcium in blood serum. Analyt. Chem.35, 1238–1240 (1963).CrossRefGoogle Scholar
  8. Kóssa, J. von: Über die im Organismus künstlich erzeugbaren Verkalkungen. Beitr. path. Anat.29, 163–202 (1901)Google Scholar
  9. Lawson, A., Rimington, C., Searle, C. E.: Antithyroid activity of 2-carbethoxythio-1-methylglyoxaline. Lancet II, 619–621 (1951).CrossRefGoogle Scholar
  10. Mathieu, H., Habib, R., Cuisinier, P., Muller, P., Royer, P.: Néphrocalcinose du rat éthyroidé à la naissance par l'iode 131. Rev. Franç. Ét. clin. Biol.6, 657–669 (1961)Google Scholar
  11. McGee-Russell, S. M.: A new reagent for the histochemical and chemical detection of calcium. Nature (Lond.)175, 301–302 (1955).Google Scholar
  12. McGee-Russell, S. M.: Histochemical methods for calcium. J. Histochem. Cytochem.6, 22–42 (1958)PubMedGoogle Scholar
  13. Newman, R. J.: The effects of thyroid hormone on vitamin D-induced nephrocalcinosis. J. Path.111, 13–21 (1973)CrossRefPubMedGoogle Scholar
  14. Pearse, A. G. E.: The Periodic Acid-Schiff reaction. Broadsheet No. 26, (new series). The Association of Clinical Pathologists (1959)Google Scholar
  15. Radiochemical Centre, Amersham: Technical Bulletin 69/7 Thyopac-3. A new kit for T3 uptake testing (1969)Google Scholar
  16. Steedman, H. F.: Alcian Blue 8GS: A new stain for mucin. Quart. J. micr. Sci.91, 477–479 (1950)Google Scholar
  17. Trinder, P.: Colorimetric microdetermination of calcium in serum. Analyst85, 889–894 (1960)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Raymond J. Newman
    • 1
  1. 1.Department of Anatomy, School of MedicineUniversity of LeedsLeedsEngland

Personalised recommendations