Calcified Tissue Research

, Volume 16, Issue 1, pp 59–71 | Cite as

Optical, physical and chemical properties of pineal gland calcifications

  • Curtis P. Mabie
  • Betty M. Wallace
Original Papers

Abstract

Calcifications of the pineal gland in the form of calcospherulites have been studied by optical microscopy, electron microscopy, electron probe analysis, X-ray diffraction, thermogravimetry, and infra-red and chemical analysis. Complex calcospherulite textures have been observed which have a granular substructure made up of apatite crystals averaging 218 Å in length and 38 Å in width. These apatite crystals appear to be a carbonate-containing hydroxyapatite, mineralogically similar to enamel.

Key words

Apatite Calcification Pineal gland Calcospherulites Calculi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angervall, L., Berger, S., Rockert, H.: A micrographic and X-ray crystallographic study of calcium in the pineal body and intercranial tumours. Acta path. microbiol. scand.44, 113–119 (1958)PubMedGoogle Scholar
  2. Earle, K. M.: X-ray diffraction and other studies of the calcareous deposits in human pineal glands. J. Neuropath. exp. Neurol.24, 108–117 (1965)PubMedGoogle Scholar
  3. Elliot, J. C.: Tooth enamel. Contributions to international symposium on tooth enamel, p. 20–58. Bristol: John Wright and Sons 1965Google Scholar
  4. Emerson, W. H., Fischer, E. E.: Infra-red absorption spectra of carbonate in calcified tissues. Arch. oral Biol.7, 671 (1962)Google Scholar
  5. Fowler, B. O., Moreno, E. C., Brown, W. E.: Infrared spectra of hydroxylapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch. oral Biol.11, 477–492 (1966)CrossRefPubMedGoogle Scholar
  6. Gardner, Murray B., Blankenhorn, David H.: Aortic medial calcification—an ultrastructure study. Arch. Path.85, 403 (1968)Google Scholar
  7. Gee, A., Dietz, V. R.: Pyrophosphate formation upon ignition of precipitated basic calcium phosphates. J. Amer. Chem. Soc.77, 2961–2965 (1955)CrossRefGoogle Scholar
  8. Glas, J. E., Omnell, K. A.: Studies on the ultrastructure of dental enamel—1. Size and shape of the apatite crystallites as deduced from X-ray diffraction data. J. Ultrastruct. Res.3, 334–344 (1960)PubMedGoogle Scholar
  9. Klug, Harold P., Alexander, LeRoy E.: X-ray diffraction procedures for polycrystalline and amorphous materials, p. 491–511. New York: John Wiley and Sons 1954Google Scholar
  10. Palache, C., Berman, H., Frondel, C.: The system of mineralogy of James D. Dana and Edward S. Dana, vol. 2, 7th ed., p. 877–889, and 902–4. New York: John Wiley and Sons 1951Google Scholar
  11. Peckham, S. C., et al.: Ethylenediamine vs. KOH-glycol in the removal of the organic matter of dentin. J. dent. Res.35, 947–949 (1956)PubMedGoogle Scholar
  12. Swanson, Howard: Standard X-ray diffraction patterns, U. S. Department of Commerce, National Bureau of Standards, Monograph 25, Section 4, p. 344, June 28, 1966Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Curtis P. Mabie
    • 1
  • Betty M. Wallace
    • 1
  1. 1.Research Associates of the American Dental Association Research Unit at the National Bureau of StandardsWashington, D. C.U.S.A.

Personalised recommendations