Skip to main content
Log in

Use of a Monte Carlo PDF method in a study of the influence of turbulent fluctuations on selectivity in a jet-stirred reactor

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A model for single-phase turbulent reacting flow is presented and a solution algorithm is described. The model combines the standardk - ε model for the velocity field with a transport equation for the probability density function (PDF) of the thermochemical variables. In this equation terms describing spatial transport by velocity fluctuations and mixing on the smallest scales are modelled. The essential advantage of this approach is that the effect of nonlinear kinetics appears in closed form and that the influence of turbulent fluctuations on mean reaction rates is included. A stochastic algorithm for the solution of the PDF transport equation, essentially due to Pope, is described. Cylindrical symmetry is assumed. The PDF is represented by ensembles ofN representative values of the thermochemical variables in each cell of a nonuniform finite-difference grid and operations on these elements representing convection, diffusion, mixing and reaction are derived. A simplified model and solution algorithm which neglects the influence of turbulent fluctuations on mean reaction rates is also described. Both algorithms are applied to a selectivity problem in a real reactor studied earlier by Liu and Barkelew. Spatial profiles of mean species mole fractions and of relative selectivity to the target product are obtained. The profiles are clearly different in both models but at the end of the reactor the same selectivity is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cx :

index referring to convection inx-direction

cy :

index referring to convection iny-direction

dx :

index referring to diffusion inx-direction

dy :

index referring to diffusion iny-direction

f φ :

composition probability density function (PDF)

f :

velocity-composition joint PDF

\(\tilde f_\phi \) :

composition PDF for density-weighted averages

\(\tilde f_{U\phi } \) :

velocity-composition joint PDF for density-weighted averages

g :

body force per unit mass

h :

specific enthalpy

i :

index referring to direction in position space

i :

index referring to value of axial coordinate

j :

index referring to direction in position space

j :

index referring to value of radial coordinate

m :

number of species

m :

index referring to mixing

n cx(i,j):

defined by equation (4.6)

n cy(i,j):

defined by equation (4.8)

n Wdx (i,j):

defined by equation (4.10)

n Edx (i,j):

defined by equation (4.12)

n Sdy (i,j):

defined by equation (4.14)

n Ndy (i,j):

defined by equation (4.16)

n m(i,j):

defined by equation (4.18)

p :

pressure

p 0 :

reference pressure

t max :

upper bound of time step associated with any process

x i :

coordinate in position space

x i :

x-coordinate of cell center

\(\bar x_i \) :

x-coordinate of cell face

y j :

y-coordinate of cell center

\(\bar y_j \) :

y-coordinate of cell face

A :

distribution function in mixing model

C µ :

model constant

J α :

flux vector of scalar φα

N :

number of elements in Monte Carlo ensemble

N l :

number of grid cells in axial direction

N J :

number of grid cells in radial direction

Q :

any fluctuating quantity

Q〉:

expectation value ofQ

\(\tilde Q\) :

Favre average ofQ

Q :

Favre average ofQ

Q″:

Favre fluctuation ofQ

\(\tilde Q\) :

source of speciesα

T :

temperature

U :

radial component of density-weighted mean velocity

U:

velocity vector

V :

axial component of density-weighted mean velocity

V :

coordinate vector in velocity space

X A :

mole fraction of speciesA

Y A :

mass fraction of speciesA

α :

index referring to scalar variable

ε :

dissipation of turbulent energy

ɛφ :

dissipation of scalar

μ T :

turbulent viscosity

ρ :

density

σ :

number of scalar variables

σ T :

turbulent Schmidt number

τ :

turbulence time

τ ij :

stress tensor

φα :

scalar variable, also called composition variable

φ :

vector of scalar variables

φ ij :

scalar variables in grid celli, j

\(\underline \phi _{ij}^n \) :

elementn of ensemble of scalar variables in celli, j

ψ :

coordinate in composition space

ω :

mixing frequency

Γ T :

turbulent diffusivity

Δt :

time step

\(\underline \Phi _{ij} \) :

ensemble of scalars in grid celli, j

References

  1. Pope, S. B.:Combust. Sci. Tech. 25 (1981) 159–174.

    Google Scholar 

  2. Roekaerts, D.: In: Taylor, C., Gresho, P., Sani, R. L. and Hauser, J. (Eds):Numerical Methods in Laminar and Turbulent Flow, U.K.: Pineridge Press, Swansea, (1989) p. 1815.

    Google Scholar 

  3. Pope, S. B.:Progr. Energy Combust. Sci. 11 (1985) 119–192.

    Google Scholar 

  4. O'Brien, E. E.: In Libby, P. A. and Williams, F. A. (eds),Turbulent Reacting Flows, Berlin: Springer-Verlag (1980) p. 185–218.

    Google Scholar 

  5. Williams, F. A.:Combustion Theory, Second Edition, Menlo Park: The Benjamin/Cummings Publishing Company (1985).

    Google Scholar 

  6. Borghi, R.:Prog. Energy Combust. Sci. 14 (1988) 245–292.

    Google Scholar 

  7. Jones, W. P. and Whitelaw, J. H.:Combust. Flame 48 (1982) 1–26.

    Google Scholar 

  8. Vos, J. B.:The calculation of turbulent reacting flows with a combustion model based on finite chemical kinetics, Ph.D. Thesis, TU Delft, 1987.

  9. Libby, P. A. and Williams, F. A.: In: Libby, P. A. and Williams, F. A. (eds),Turbulent Reacting Flows, Berlin: Springer-Verlag (1980) p. 1.

    Google Scholar 

  10. Correa, S. M. and Shyy, W.:Prog. Energy Combust. Sci. 13 (1987) 249–292.

    Google Scholar 

  11. Bockhorn, H.: In: Brauner, C.-M. and Schmidt-Laine, C. (eds),Mathematical Modelling in Combustion and Related Topics, Martinus Nijhoff Publishers (1988) pp. 411–420.

  12. Borghi, R., Argueyrolles, B., Gauffie, S. and Souhaite, P.: Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, USA (1986) pp. 1591–1599.

    Google Scholar 

  13. Janicka, J., Kolbe, W. and Kollmann, W.: In: Crowe, C. T. and Grosshander, W. (eds),Proceedings of the 1978 Heat Transfer and Fluid Mechanics Institute, Stanford University Press (1978).

  14. Nguyen, T. V. and Pope, S. B.:Combust. Sci. Tech. 42 (1984) 13–45.

    Google Scholar 

  15. Nguyen, T. V.:Monte Carlo calculations of turbulent diffusion flames, Ph.D. Thesis, Massachusetts Institute of Technology, USA, (1983).

    Google Scholar 

  16. Givi, P., Sirignano, W. A. and Pope, S. B.:Combust. Sci. Tech. 37 (1984) 59–78.

    Google Scholar 

  17. Givi, P., Ramos, J. I. and Sirignano, W. A.,Prog. Astronaut. Aeronaut. 95 (1984) 385–418.

    Google Scholar 

  18. Givi, P., Ramos, J. I. and Sirignano, W. A.:J. Non-equilib. Thermodyn. 10 (1985) 755–104.

    Google Scholar 

  19. Jones, W. P. and Kollmann, W.: In:Turbulent Shear Flows 5, Berlin: Springer-Verlag (1987) pp. 296–309.

    Google Scholar 

  20. Chen, J.-Y., Kollmann, W. and Dibble, R. W.,Combust. Sci. Tech. 64 (1989) 315–346.

    Google Scholar 

  21. Chen, J.-Y. and Kollmann, W.: Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, USA (1989) 645–653.

    Google Scholar 

  22. Hsieh, T.-H. J. and O'Brien, E. E.:Combust. Sci. Tech. 46 (1986) 267–287.

    Google Scholar 

  23. Pope, S. B. and Correa, S. M.: Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, USA (1986) 1341–1348.

    Google Scholar 

  24. Anand, M. S. and Pope, S. B.:Combust. Flame 67 (1987) 127–142.

    Google Scholar 

  25. Anand, M. S.:Probability density function (PDF) calculations for premixed turbulent flames, Ph.D. Thesis, Cornell University, 1986.

  26. Haworth, D. C. and Pope, S. B.:Phys. Fluids 30 (1987) 1026–1044.

    Google Scholar 

  27. Haworth, D. C. and Pope, S. B.:J. Comp. Phys. 72 (1987) 311–346.

    Google Scholar 

  28. Anand, M. S., Pope, S. B. and Mongia, H. C.: In: Borghi, R. and Murthy, S. N. B. (eds),Turbulent Reactive Flows, New York: Springer-Verlag (1989) 672–693.

    Google Scholar 

  29. Haworth, D. C., Drake, M. C. and Blint, R. J.:Combust. Sci. Tech. 60 (1988) 287–318.

    Google Scholar 

  30. Kollmann, W.: In: Borghi, R. and Murthy, S. N. B. (eds),Turbulent Reactive Flows, New York: Springer-Verlag (1989) 715–730.

    Google Scholar 

  31. Kollmann, W.:Theor. Comp. Fluid dyn. 1 (1990) 249–285.

    Google Scholar 

  32. Correa, S. M., Gulati, A. and Pope, S. B.:Combust. Flame 72 (1988) 159–173.

    Google Scholar 

  33. Pope, S. B.:Ann. Rev. Fluid Mech. 19 (1987) 237–270.

    Google Scholar 

  34. Arrojo, P., Dopazo, C. and Jones, W. P.:Chem. Eng. Science 43 (1988) 1935–1940.

    Google Scholar 

  35. Curl, R. L.:AIChE. J. 9 (1963) 175.

    Google Scholar 

  36. Pope, S. B.:Combust. Sci. Tech. 28 (1982) 131–135.

    Google Scholar 

  37. Dopazo, C.:Phys. Fluids 22 (1979) 20.

    Google Scholar 

  38. Janicka, J., Kolbe, W. and Kollmann, W.:J. Nonequil. Thermodyn. 4 (1979) 47.

    Google Scholar 

  39. Pope, S. B. and Chen, Y.-L.:Phys. Fluids A 2 (1990) 1437.

    Google Scholar 

  40. Chen, J.-Y. and Kollmann, W.:Mixing models for turbulent flows with exothermic reactions, Seventh Symposium on Turbulent Shear Flows, Stanford University, August 21–23 (1989).

  41. Kosaly, G.:Combust. Sci. Tech. 49 (1986) 227–234.

    Google Scholar 

  42. Kosaly, G. and Givi, G.:Combust. Flame 70 (1987) 101–118.

    Google Scholar 

  43. McMurtry, P. A. and Givi, P.:Combust. Flame 77 (1989) 171–185.

    Google Scholar 

  44. Norris, A. T. and Pope, S. B.:Combust. Flame 83 (1991) 27–42.

    Google Scholar 

  45. Koochesfahani, M. M. and Dimotakis, P. E.:J. Fluid Mech. 170 (1986) 83–112.

    Google Scholar 

  46. Breidenthal, R. E., Tong, K.-O., Wong, G. S., Hamerquist, R. D. and Landry, P. B.:AIAA J. 24 (1986) 1867–1869.

    Google Scholar 

  47. Broadwell, J. E. and Mungal, G. M.: Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, USA (1989) 579–587.

    Google Scholar 

  48. Kerstein, A. R.:Combust. Sci. Tech. 60 (1988) 391–421.

    Google Scholar 

  49. Kerstein, A. R.:Combust. Flame 75 (1989) 397–413.

    Google Scholar 

  50. Komori, S., Hunt, J. C. R., Kanzaki, T. and Murakami, Y.:The effects of turbulent mixing on the correlation between the species concentration fluctuations in non-premixed reacting flows, preprint, University of Cambridge (1989) and references therein.

  51. Liu, C. H. and Barkelew, C. H.:AIChE J. 32 (1985) 1813.

    Google Scholar 

  52. FLUENT Manual, Version 2.95, Creare Inc., Hannover, New Hampshire (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roekaerts, D. Use of a Monte Carlo PDF method in a study of the influence of turbulent fluctuations on selectivity in a jet-stirred reactor. Appl. Sci. Res. 48, 271–300 (1991). https://doi.org/10.1007/BF02008201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02008201

Key words

Navigation