Biologic significance of piezoelectricity

This is a preview of subscription content, log in to check access.

References

  1. Alberty, R. A.: In: The proteins, chemistry, biological activity, and methods (H. Neurath andK. A. Bailey, eds.), 1, p. 530. New York: Academic Press 1953.

    Google Scholar 

  2. Ambrose, E. J.: In: Cell electrophoresis (E. J. Ambrose, ed.); Structure and biological properties of the cell surface. London: J. & A. Churchill, Ltd. 1965.

    Google Scholar 

  3. Athenstaedt, H.: Ferroelektrische und piezoelektrische Eigenschaften biologisch bedeutsamer Stoffe. Naturwissenschaften13, 465–472 (1961).

    Google Scholar 

  4. Atkinson, P. J.: Variation in trabecular structure of vertebrae with age. Calc. Tiss. Res.1, 24–32 (1967).

    Google Scholar 

  5. Bass, L., andW. J. Moore: Electric fields in perfused nerves. Nature (Lond.)214, 393–394 (1967).

    Google Scholar 

  6. Bassett, C. A. L.: Current concepts of bone formation. J. Bone Jt Surg.44-A, 1217–1244 (1962).

    Google Scholar 

  7. —: In: Bone biodynamics (H. M. Frost, ed.); Environmental and cellular factors regulating osteogenesis, p. 233–244. Boston: Little, Brown and Co. 1964.

    Google Scholar 

  8. —: Electrical effects in bone. Sci. Amer.213, 18–25 (1965).

    Google Scholar 

  9. —: In: Third European Symposium on Calcified Tissues (H. Fleisch, H. J. J. Blackwood, andM. Owen, eds.); Electromechanical factors regulating bone architecture, p. 78–89. Berlin-Heidelberg-New York: Springer 1966a.

    Google Scholar 

  10. —: The regulation of bone structure. Med. News (N. Y.)182, 9;183, 8 (1966b).

    Google Scholar 

  11. —: In: Cartilage degradation and repair (C. A. L. Bassett, ed.). Washington, D. C.: National Academy of Sciences-National Research Council 1967a.

    Google Scholar 

  12. —: In: 1968 Mc Graw-Hill Yearbook of Science and Technology; Bone. New York: Mc Graw-Hill Book Co. 1967b.

    Google Scholar 

  13. —, andR. O. Becker: Generation of electric potentials by bone in response to mechanical stress. Science137, 1063–1064 (1962).

    PubMed  Google Scholar 

  14. —, andI. Herrmann: Influence of oxygen concentration and mechanical factors on differe entiation of connective tissuesin vitro. Nature (Lond.)190, 460–461 (1961).

    Google Scholar 

  15. —,R. J. Pawluk, andR. O. Becker: Effects of electric currents on bonein vivo. Nature-(Lond.)204, 652–654 (1964).

    Google Scholar 

  16. Bazenhov, V. A.: Piezoelectric properties of wood. Consultants Bureau, New York, 180 p. (1961).

  17. Becker, R. O.: The bioelectric factors in amphibian-limb regeneration. J. Bone Jt Surg.43-A, 643–656 (1961).

    Google Scholar 

  18. Becker, R. O., andC. H. Bachman: Bioelectric effects in tissue. In: Letters to the Editor, Clin. Orthop.43, 251–254 (1965).

  19. —,C. A. L. Bassett, andC. H. Bachman: In: Bone biodynamics (H. Frost, ed.); Bioelectrical factors controlling bone structure, p. 209–231. Boston: Little, Brown and Co. 1964.

    Google Scholar 

  20. —, andF. M. Brown: Photoelectric effects in human bone. Nature (Lond.)206, 1325–1328 (1965).

    Google Scholar 

  21. —, andA. A. Marino: Electron paramagnetic resonance spectra of bone and its major components. Nature (Lond.)210, 583–588 (1966).

    Google Scholar 

  22. —, andD. G. Murray: A method for producing cellular dedifferentiation by means of very small electrical currents. Trans. N. Y. Acad. Sci.29, 606–615 (1967).

    PubMed  Google Scholar 

  23. Benson, S. W., andJ. W. King, Jr.: Electrostatic aspects of physical adsorption: Implications for molecular sieves and gaseous anesthesia. Science150, 1710–1713 (1965).

    PubMed  Google Scholar 

  24. Bingley, M. S.: Further investigations into membrane potentials in amoebae. Exp. Cell Res.43, 1–12 (1966).

    PubMed  Google Scholar 

  25. Braden, M., A. G. Bairstow, I. Beider, andB. G. Ritter: Electrical and piezo-electrical properties of dental hard tissues. Nature (Lond.)212, 1565–1566 (1966).

    Google Scholar 

  26. Brandt, P. W., andA. R. Freeman: Plasma membrane: Substructural changes correlated with electrical resistance and pinocytosis. Science155, 582–585 (1967).

    PubMed  Google Scholar 

  27. Cady, W. G.: Piezoelectricity, 806 p. New York: Mc Graw-Hill Book Co. 1946.

    Google Scholar 

  28. Christiansen, J. A., C. E. Jensen, andTh. Vilstrup: Displacement potentials and bending of rod-like polyelectrolytes. Nature (Lond.)191, 484–485 (1961).

    Google Scholar 

  29. Cieszynski, T.: Studies on the regeneration of ossal tissue II. Arch. Immunologiae et Therapie Experimentalis11, 191–209 (1963).

    Google Scholar 

  30. Cochran, G. V. B.: Electromechanical characteristics of moist bone. Sc. D. (med.) Thesis Columbia University, New York, N. Y. (1966).

    Google Scholar 

  31. —,R. J. Pawluk, andC. A. L. Bassett: Stress generated electric potentials in the mandible and teeth. Arch. oral Biol.12, 917–920 (1967).

    PubMed  Google Scholar 

  32. Curry, J. D.: Three analogies to explain the mechanical properties of bone. Biorheology2, 1–10 (1964).

    Google Scholar 

  33. Dainora, J.: Piezoelectric properties of bone. M. Sc. Thesis, West Virginia University, Morgantown, 60 p. 1964.

    Google Scholar 

  34. De Duve, C.: The function of intracellular hydrolases. Exp. Cell Res., Suppl.7, 169–182 (1959).

    Google Scholar 

  35. Dietrick, J. E., G. D. Whedon, andE. Shorr: Effects of immobilization upon various metabolic and physiologic functions of normal man. Amer. J. Med.4, 3–36 (1948).

    Google Scholar 

  36. Digby, P. S. B.: Semi-conduction and electrode processes in biological material. I. Crustacea and certain soft-bodied forms. Proc. roy. Soc. B161, 504–525 (1965).

    Google Scholar 

  37. —: Mechanism of calcification in mammalian bone. Nature (Lond.)212, 1250–1252 (1966).

    Google Scholar 

  38. Duchesne, J., J. Depireux, A. Bertinchamps, N. Comet, andJ. M. van der Kaa: Thermal and electrical properties of nucleic acids and proteins. Nature (Lond.)188, 405–406 (1960).

    Google Scholar 

  39. Eanes, E. D., I. H. Gillessen, andA. S. Posner: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.)208, 365–367 (1965).

    Google Scholar 

  40. Eccles, J. C., andJ. C. Jaeger: The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. roy. Soc. B148, 38–56 (1958).

    Google Scholar 

  41. Eisenman, G., J. P. Sandblom, andJ. L. Walker, Jr.: Membrane structure and ion permeation. Science155, 965–974 (1967).

    PubMed  Google Scholar 

  42. Epker, B. N., andH. M. Frost: Correlation of bone resorption and formation with the physiological behavior of loaded bone. J. dent. Res.44, 33–41 (1965).

    PubMed  Google Scholar 

  43. Elul, R.: Dependence of synaptic transmission on protein metabolism of nerve cells: A possible electrokinetic mechanism of learning? Nature (Lond.)210, 1127–1131 (1966).

    Google Scholar 

  44. Fell, H. B.: In: Biochemistry and physiology of bone (G. H. Bourne, ed.); Skeletal development in tissue culture, p. 401–411. New York: Academic Press 1956.

    Google Scholar 

  45. Freeman, J. R.: Dielectric properties of mineralized tissues. Trans. N. Y. Acad. Sci.29, 623–633 (1967).

    PubMed  Google Scholar 

  46. Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Japan10, 149–154 (1955).

    Google Scholar 

  47. —: On the piezoelectric effect of silk fibers. J. Phys. Soc. Japan12, 1301 (1956).

    Google Scholar 

  48. —: The piezoelectric effect in fibrous proteins. Reports on Progr. in Polymer Phys. in Japan3, 168–169 (1960) [in Japanese].

    Google Scholar 

  49. —,M. Date, andN. Hirai: Piezoelectric effect in poly-y-methyl-L-glutamate. Nature (Lond.)211, 1079 (1966).

    Google Scholar 

  50. —, andI. Yasuda: On the piezoelectric effect of bone. J. Phys. Soc. Japan12, 1158–1162 (1957).

    Google Scholar 

  51. ——: Piezoelectric effects in collagen. Jap. J. appl. Phys.3, 117–121 (1964).

    Google Scholar 

  52. Galligan, W. L., andL. D. Bertholf: Piezoelectric effect in wood. Forest Products J.12, 517–524 (1963).

    Google Scholar 

  53. Geiser, M., andJ. Trueta: Muscle action, bone rarefaction and bone formation: An experimental study. J. Bone Jt Surg.40-B, 282–311 (1958).

    Google Scholar 

  54. Glimcher, M. J., A. J. Hodge, andF. O. Schmitt: Macromolecular aggregation states in relation to mineralization: The collagen-hydroxyapatite system as studiedin vitro. Proc. nat. Acad. Sci. (Wash.)43, 860–867 (1957).

    Google Scholar 

  55. Haberditzl, W.: Enzyme activity in high magnetic fields. Nature (Lond.)213, 72–73 (1967).

    Google Scholar 

  56. Huber, F.: Piezoeffects in p-n junctions of semiconducting titanium oxide filsm. Appl. Phys. Letters2, 76–78 (1963).

    Google Scholar 

  57. Iida, H., S. Ko, Y. Miyashita, S. Sawada, M. Maeda, H. Nagayama, A. Kawai, andS. Kitamura: On electric callus produced by an alternating current. J. Kyoto Pref. Med. Univ.60, 561–564 (1956).

    Google Scholar 

  58. Ives, D. J. G., andG. J. Janz: Reference electrodes. London: Academic Press 1961.

    Google Scholar 

  59. Jackson, D. S., andA. Neuberger: Observations on the isoionic and isoelectric point of acid-processed gelatin from insoluble and citrate-extracted collagen. Biochim. biophys. Acta (Amst.)26, 638–639 (1957).

    Google Scholar 

  60. Jaffe, B.: A primer of ferroelectricity and piezoelectric ceramics. Technical Paper TP-217, Piezoelectric Division, Clevite Corp., Cleveland, 9p. 1960.

  61. Jahn, T. L.: Contraction of protoplasm. II. Theory: Anodal vs. cathodal in relation to calcium. J. Cell Physiol.68, 135–148 (1966).

    PubMed  Google Scholar 

  62. Jahn, T. L.: A possible mechanism for the effect of electrical potentials on apatite formation in bone. Clin. Orthop. (in press).

  63. Kahn, L. D., R. J. Carroll, andL. P. Witnauer: Some effects of electrolytes on collagen in solution. Biochim. biophys. Acta (Amst.)63, 243–254 (1962).

    Google Scholar 

  64. Kay, M. I., R. A. Young, andA. S. Posner: Crystal structure of hydroxyapatite. Nature (Lond.)204, 1050–1052 (1964).

    Google Scholar 

  65. Lang, S. B.: Pyroelectric effect in bone and tendon. Nature (Lond.)212, 704–705 (1966).

    Google Scholar 

  66. Levengood, W. C.: Cytogenetic variations induced with a magnetic probe. Nature (Lond.)209, 1009–1013 (1966).

    Google Scholar 

  67. —: Morphogenesis as influenced by locally administered magnetic fields. Biophys. J.7, 297–307 (1967).

    PubMed  Google Scholar 

  68. Liboff, R. L.: A biomagnetic hypothesis. Biophys. J.5, 845–853 (1965).

    PubMed  Google Scholar 

  69. Loewenstein, W. R.: Permeability of membrane junctions. Ann. N. Y. Acad. Sci.137, 441–472 (1966).

    PubMed  Google Scholar 

  70. Lubin, M.: Intracellular potassium and macromolecular synthesis in mammalian cells. Nature (Lond.)213, 451–453 (1967).

    Google Scholar 

  71. Lucy, J. A.: Globular lipid micelles and cell membranes. J. theor. Biol.7, 360–373 (1964).

    Google Scholar 

  72. Mack, P. B., P. A. La Chance, G. P. Vose, andF. B. Vogt: Bone demineralization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital flight. Amer. J. Roentgenol.100, 503–511 (1967).

    PubMed  Google Scholar 

  73. Marino, A. A., andR. O. Becker: Evidence for direct physical bonding between the collagen fibers and apatite crystals in bone. Nature (Lond.)213, 697–698 (1967).

    Google Scholar 

  74. Marsh, G., andH. W. Beams:In vitro control of growing chick nerve fibers by applied electric currents. J. cell. comp. Physiol.27, 139–157 (1946).

    Google Scholar 

  75. Minkin, C., B. Poulton, andWm. Hoover: The effect of direct current stimulation on femora of growing rabbits. (Abstract) Fed. Proc.26, No 2, 890 (1967).

    Google Scholar 

  76. Nakai, J.: Skeletal muscle in organ culture. Exp. Cell Res.40, 307–315 (1965).

    PubMed  Google Scholar 

  77. Neuman, W. F.: In: Ion exchangers in organic and biochemistry (C. Caliman andT. R. E. Kressman, eds.); Bone as an ion exchange system, p. 197–212. New York: Interscience Publisher, Inc. 1957.

    Google Scholar 

  78. Noguchi, K.: Study on dynamic callus and electric callus. J. Jap. Orthop. Surg. Soc.31, 1–24 (1957).

    Google Scholar 

  79. Paff, G. H.: Influence of pH on growth of bone in tissue culture. Proc. Soc. exp. Biol. (N.Y.)68, 288–293 (1948).

    Google Scholar 

  80. Paterson, D.: Crystal faults as electronic devices. New Scientist32, 31–32 (1966).

    Google Scholar 

  81. Picton, H. D.: Some responses ofDrosophila to weak magnetic and electrostatic fields. Nature (Lond.)211, 303–304 (1966).

    Google Scholar 

  82. Pidot, A. I., andJ. M. Diamond: Streaming potentials in a biological membrane. Nature (Lond.)201, 701–702 (1964).

    Google Scholar 

  83. Ramachandran, G. N., andG. Kartha: Structure of collagen. Nature (Lond.)174, 269–270 (1954).

    Google Scholar 

  84. Rinder, W., andR. Nelson: Piezojunctions: elements of a new class of semiconductor devices. Proc. IRE50, 2106 (1962).

    Google Scholar 

  85. Rowland, R. E.: Exchangeable bone calcium. Clin. Orthop.49, 233–248 (1966).

    PubMed  Google Scholar 

  86. Salo, T. P.: The preparation of ichthyocol collagen by electrodeposition. Arch. Biochem.28, 68–72 (1950).

    PubMed  Google Scholar 

  87. Schryver, H. F. andR. B. L. Gwatkin: Effect of alkaline media on the growth of embryonic chick tibiotarsi in organ culture. Nature (Lond.)202, 822–823 (1964).

    Google Scholar 

  88. Sedlin, E. D. A rheologic model for cortical bone. Acta orthop. scand., Suppl.83, 77p. (1965).

  89. Shamos, M. H., andL. S. Lavine: Physical basis for bioelectric effects in mineralized tissues. Clin. Orthop.35, 177–188 (1964).

    PubMed  Google Scholar 

  90. ——: Letters to the Editor. Clin. Orthop.43, 254–255 (1965).

    PubMed  Google Scholar 

  91. ——: Piezoelectricity as a fundamental property of biological tissues Nature (Lond.)213, 267–269 (1967).

    Google Scholar 

  92. ——, andM. I. Shamos: Piezoelectric effect in bone. Nature (Lond.)197, 81 (1963).

    Google Scholar 

  93. Sheridan, J. D.: Electrophysiological study of special connections between cells in the early chick embryo. J. Cell Biol.31, C1-C5 (1966).

    PubMed  Google Scholar 

  94. Shubnikov, A. V.: Quoted by V. A. Bazenhov 1961 (1946).

  95. Smith, S. D.: Induction of partial limb regeneration inRana pipiens by galvanic stimulation. Anat. Rec.158, 89–98 (1967).

    PubMed  Google Scholar 

  96. Solomons, C. C., D. Shuster, andA. Kwan: Biochemical effects of mechanical stress. Aerospace Med.36, 33–34 (1965).

    Google Scholar 

  97. Spruch, G. M., andM. H. Shamos: Light induced effects in bone. Nature (Lond.)212, 1586–1587 (1966).

    Google Scholar 

  98. Tasaki, I., I. Singer, andT. Takenaka: Effects of internal and external ionic environment on excitability of squid giant axon. J. gen. Physiol.48, 1095–1123 (1965).

    PubMed  Google Scholar 

  99. Teorell, T.: Electrokinetic considerations of mechanoelectrical transduction. Ann. N.Y. Acad. Sci.137, 950–966 (1966).

    PubMed  Google Scholar 

  100. Termine, J. D., andA. S. Posner: Amorphous/crystalline interrelationships in bone mineral. Calc. Tiss. Res.1, 8–23 (1967).

    Google Scholar 

  101. Thompson, D'Arcy: On growth and form. ed. 2, vol. 2 (reprinted 1963), p. 958–1025. Cambridge: Cambridge University Press 1936.

    Google Scholar 

  102. Tischendorf, F.: Das Verhalten der haversschen Systeme bei Belastung. Arch. Entwickl.-Mech. Org.145, 318–332 (1951).

    Google Scholar 

  103. Weiss, L., andE. Mayhew: The cell periphery. New Engl. J. Med.276, 1354–1362 (1967).

    PubMed  Google Scholar 

  104. Weiss, P.: In: Wound healing. Biological foundation of repair at the cellular level. Washington, D. C.: National Academy of Sciences-National Research Council 1966.

    Google Scholar 

  105. Wolff, J.: Das Gesetz der Transformation der Knochen. 152 p. Berlin: A. Hirschwald 1892.

    Google Scholar 

  106. Yasuda, I.: On the piezoelectric activity of bone. J. Jap. Orthop. Surg. Soc.28, 267–269 (1954) [in Japanese].

    Google Scholar 

  107. —,K. Noguchi, andT. Sata: Dynamic and electric callus. Proc. Jap. Orthop. Surg. Soc. (Abstract) J. Bone Jt Surg.37-A, 1292–1293 (1955).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Andrew L. Bassett M. D..

Additional information

Work reported herein was supported by U.S.P.H.S. grants TIAM 5408 and AM 07822.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bassett, C.A.L. Biologic significance of piezoelectricity. Calc. Tis Res. 1, 252–272 (1967). https://doi.org/10.1007/BF02008098

Download citation

Keywords

  • Biologic Significance