Calcified Tissue Research

, Volume 1, Issue 1, pp 252–272 | Cite as

Biologic significance of piezoelectricity

  • C. Andrew L. Bassett


Biologic Significance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberty, R. A.: In: The proteins, chemistry, biological activity, and methods (H. Neurath andK. A. Bailey, eds.), 1, p. 530. New York: Academic Press 1953.Google Scholar
  2. Ambrose, E. J.: In: Cell electrophoresis (E. J. Ambrose, ed.); Structure and biological properties of the cell surface. London: J. & A. Churchill, Ltd. 1965.Google Scholar
  3. Athenstaedt, H.: Ferroelektrische und piezoelektrische Eigenschaften biologisch bedeutsamer Stoffe. Naturwissenschaften13, 465–472 (1961).Google Scholar
  4. Atkinson, P. J.: Variation in trabecular structure of vertebrae with age. Calc. Tiss. Res.1, 24–32 (1967).Google Scholar
  5. Bass, L., andW. J. Moore: Electric fields in perfused nerves. Nature (Lond.)214, 393–394 (1967).Google Scholar
  6. Bassett, C. A. L.: Current concepts of bone formation. J. Bone Jt Surg.44-A, 1217–1244 (1962).Google Scholar
  7. —: In: Bone biodynamics (H. M. Frost, ed.); Environmental and cellular factors regulating osteogenesis, p. 233–244. Boston: Little, Brown and Co. 1964.Google Scholar
  8. —: Electrical effects in bone. Sci. Amer.213, 18–25 (1965).Google Scholar
  9. —: In: Third European Symposium on Calcified Tissues (H. Fleisch, H. J. J. Blackwood, andM. Owen, eds.); Electromechanical factors regulating bone architecture, p. 78–89. Berlin-Heidelberg-New York: Springer 1966a.Google Scholar
  10. —: The regulation of bone structure. Med. News (N. Y.)182, 9;183, 8 (1966b).Google Scholar
  11. —: In: Cartilage degradation and repair (C. A. L. Bassett, ed.). Washington, D. C.: National Academy of Sciences-National Research Council 1967a.Google Scholar
  12. —: In: 1968 Mc Graw-Hill Yearbook of Science and Technology; Bone. New York: Mc Graw-Hill Book Co. 1967b.Google Scholar
  13. —, andR. O. Becker: Generation of electric potentials by bone in response to mechanical stress. Science137, 1063–1064 (1962).PubMedGoogle Scholar
  14. —, andI. Herrmann: Influence of oxygen concentration and mechanical factors on differe entiation of connective tissuesin vitro. Nature (Lond.)190, 460–461 (1961).Google Scholar
  15. —,R. J. Pawluk, andR. O. Becker: Effects of electric currents on bonein vivo. Nature-(Lond.)204, 652–654 (1964).Google Scholar
  16. Bazenhov, V. A.: Piezoelectric properties of wood. Consultants Bureau, New York, 180 p. (1961).Google Scholar
  17. Becker, R. O.: The bioelectric factors in amphibian-limb regeneration. J. Bone Jt Surg.43-A, 643–656 (1961).Google Scholar
  18. Becker, R. O., andC. H. Bachman: Bioelectric effects in tissue. In: Letters to the Editor, Clin. Orthop.43, 251–254 (1965).Google Scholar
  19. —,C. A. L. Bassett, andC. H. Bachman: In: Bone biodynamics (H. Frost, ed.); Bioelectrical factors controlling bone structure, p. 209–231. Boston: Little, Brown and Co. 1964.Google Scholar
  20. —, andF. M. Brown: Photoelectric effects in human bone. Nature (Lond.)206, 1325–1328 (1965).Google Scholar
  21. —, andA. A. Marino: Electron paramagnetic resonance spectra of bone and its major components. Nature (Lond.)210, 583–588 (1966).Google Scholar
  22. —, andD. G. Murray: A method for producing cellular dedifferentiation by means of very small electrical currents. Trans. N. Y. Acad. Sci.29, 606–615 (1967).PubMedGoogle Scholar
  23. Benson, S. W., andJ. W. King, Jr.: Electrostatic aspects of physical adsorption: Implications for molecular sieves and gaseous anesthesia. Science150, 1710–1713 (1965).PubMedGoogle Scholar
  24. Bingley, M. S.: Further investigations into membrane potentials in amoebae. Exp. Cell Res.43, 1–12 (1966).PubMedGoogle Scholar
  25. Braden, M., A. G. Bairstow, I. Beider, andB. G. Ritter: Electrical and piezo-electrical properties of dental hard tissues. Nature (Lond.)212, 1565–1566 (1966).Google Scholar
  26. Brandt, P. W., andA. R. Freeman: Plasma membrane: Substructural changes correlated with electrical resistance and pinocytosis. Science155, 582–585 (1967).PubMedGoogle Scholar
  27. Cady, W. G.: Piezoelectricity, 806 p. New York: Mc Graw-Hill Book Co. 1946.Google Scholar
  28. Christiansen, J. A., C. E. Jensen, andTh. Vilstrup: Displacement potentials and bending of rod-like polyelectrolytes. Nature (Lond.)191, 484–485 (1961).Google Scholar
  29. Cieszynski, T.: Studies on the regeneration of ossal tissue II. Arch. Immunologiae et Therapie Experimentalis11, 191–209 (1963).Google Scholar
  30. Cochran, G. V. B.: Electromechanical characteristics of moist bone. Sc. D. (med.) Thesis Columbia University, New York, N. Y. (1966).Google Scholar
  31. —,R. J. Pawluk, andC. A. L. Bassett: Stress generated electric potentials in the mandible and teeth. Arch. oral Biol.12, 917–920 (1967).PubMedGoogle Scholar
  32. Curry, J. D.: Three analogies to explain the mechanical properties of bone. Biorheology2, 1–10 (1964).Google Scholar
  33. Dainora, J.: Piezoelectric properties of bone. M. Sc. Thesis, West Virginia University, Morgantown, 60 p. 1964.Google Scholar
  34. De Duve, C.: The function of intracellular hydrolases. Exp. Cell Res., Suppl.7, 169–182 (1959).Google Scholar
  35. Dietrick, J. E., G. D. Whedon, andE. Shorr: Effects of immobilization upon various metabolic and physiologic functions of normal man. Amer. J. Med.4, 3–36 (1948).Google Scholar
  36. Digby, P. S. B.: Semi-conduction and electrode processes in biological material. I. Crustacea and certain soft-bodied forms. Proc. roy. Soc. B161, 504–525 (1965).Google Scholar
  37. —: Mechanism of calcification in mammalian bone. Nature (Lond.)212, 1250–1252 (1966).Google Scholar
  38. Duchesne, J., J. Depireux, A. Bertinchamps, N. Comet, andJ. M. van der Kaa: Thermal and electrical properties of nucleic acids and proteins. Nature (Lond.)188, 405–406 (1960).Google Scholar
  39. Eanes, E. D., I. H. Gillessen, andA. S. Posner: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.)208, 365–367 (1965).Google Scholar
  40. Eccles, J. C., andJ. C. Jaeger: The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. roy. Soc. B148, 38–56 (1958).Google Scholar
  41. Eisenman, G., J. P. Sandblom, andJ. L. Walker, Jr.: Membrane structure and ion permeation. Science155, 965–974 (1967).PubMedGoogle Scholar
  42. Epker, B. N., andH. M. Frost: Correlation of bone resorption and formation with the physiological behavior of loaded bone. J. dent. Res.44, 33–41 (1965).PubMedGoogle Scholar
  43. Elul, R.: Dependence of synaptic transmission on protein metabolism of nerve cells: A possible electrokinetic mechanism of learning? Nature (Lond.)210, 1127–1131 (1966).Google Scholar
  44. Fell, H. B.: In: Biochemistry and physiology of bone (G. H. Bourne, ed.); Skeletal development in tissue culture, p. 401–411. New York: Academic Press 1956.Google Scholar
  45. Freeman, J. R.: Dielectric properties of mineralized tissues. Trans. N. Y. Acad. Sci.29, 623–633 (1967).PubMedGoogle Scholar
  46. Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Japan10, 149–154 (1955).Google Scholar
  47. —: On the piezoelectric effect of silk fibers. J. Phys. Soc. Japan12, 1301 (1956).Google Scholar
  48. —: The piezoelectric effect in fibrous proteins. Reports on Progr. in Polymer Phys. in Japan3, 168–169 (1960) [in Japanese].Google Scholar
  49. —,M. Date, andN. Hirai: Piezoelectric effect in poly-y-methyl-L-glutamate. Nature (Lond.)211, 1079 (1966).Google Scholar
  50. —, andI. Yasuda: On the piezoelectric effect of bone. J. Phys. Soc. Japan12, 1158–1162 (1957).Google Scholar
  51. ——: Piezoelectric effects in collagen. Jap. J. appl. Phys.3, 117–121 (1964).Google Scholar
  52. Galligan, W. L., andL. D. Bertholf: Piezoelectric effect in wood. Forest Products J.12, 517–524 (1963).Google Scholar
  53. Geiser, M., andJ. Trueta: Muscle action, bone rarefaction and bone formation: An experimental study. J. Bone Jt Surg.40-B, 282–311 (1958).Google Scholar
  54. Glimcher, M. J., A. J. Hodge, andF. O. Schmitt: Macromolecular aggregation states in relation to mineralization: The collagen-hydroxyapatite system as studiedin vitro. Proc. nat. Acad. Sci. (Wash.)43, 860–867 (1957).Google Scholar
  55. Haberditzl, W.: Enzyme activity in high magnetic fields. Nature (Lond.)213, 72–73 (1967).Google Scholar
  56. Huber, F.: Piezoeffects in p-n junctions of semiconducting titanium oxide filsm. Appl. Phys. Letters2, 76–78 (1963).Google Scholar
  57. Iida, H., S. Ko, Y. Miyashita, S. Sawada, M. Maeda, H. Nagayama, A. Kawai, andS. Kitamura: On electric callus produced by an alternating current. J. Kyoto Pref. Med. Univ.60, 561–564 (1956).Google Scholar
  58. Ives, D. J. G., andG. J. Janz: Reference electrodes. London: Academic Press 1961.Google Scholar
  59. Jackson, D. S., andA. Neuberger: Observations on the isoionic and isoelectric point of acid-processed gelatin from insoluble and citrate-extracted collagen. Biochim. biophys. Acta (Amst.)26, 638–639 (1957).Google Scholar
  60. Jaffe, B.: A primer of ferroelectricity and piezoelectric ceramics. Technical Paper TP-217, Piezoelectric Division, Clevite Corp., Cleveland, 9p. 1960.Google Scholar
  61. Jahn, T. L.: Contraction of protoplasm. II. Theory: Anodal vs. cathodal in relation to calcium. J. Cell Physiol.68, 135–148 (1966).PubMedGoogle Scholar
  62. Jahn, T. L.: A possible mechanism for the effect of electrical potentials on apatite formation in bone. Clin. Orthop. (in press).Google Scholar
  63. Kahn, L. D., R. J. Carroll, andL. P. Witnauer: Some effects of electrolytes on collagen in solution. Biochim. biophys. Acta (Amst.)63, 243–254 (1962).Google Scholar
  64. Kay, M. I., R. A. Young, andA. S. Posner: Crystal structure of hydroxyapatite. Nature (Lond.)204, 1050–1052 (1964).Google Scholar
  65. Lang, S. B.: Pyroelectric effect in bone and tendon. Nature (Lond.)212, 704–705 (1966).Google Scholar
  66. Levengood, W. C.: Cytogenetic variations induced with a magnetic probe. Nature (Lond.)209, 1009–1013 (1966).Google Scholar
  67. —: Morphogenesis as influenced by locally administered magnetic fields. Biophys. J.7, 297–307 (1967).PubMedGoogle Scholar
  68. Liboff, R. L.: A biomagnetic hypothesis. Biophys. J.5, 845–853 (1965).PubMedGoogle Scholar
  69. Loewenstein, W. R.: Permeability of membrane junctions. Ann. N. Y. Acad. Sci.137, 441–472 (1966).PubMedGoogle Scholar
  70. Lubin, M.: Intracellular potassium and macromolecular synthesis in mammalian cells. Nature (Lond.)213, 451–453 (1967).Google Scholar
  71. Lucy, J. A.: Globular lipid micelles and cell membranes. J. theor. Biol.7, 360–373 (1964).Google Scholar
  72. Mack, P. B., P. A. La Chance, G. P. Vose, andF. B. Vogt: Bone demineralization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital flight. Amer. J. Roentgenol.100, 503–511 (1967).PubMedGoogle Scholar
  73. Marino, A. A., andR. O. Becker: Evidence for direct physical bonding between the collagen fibers and apatite crystals in bone. Nature (Lond.)213, 697–698 (1967).Google Scholar
  74. Marsh, G., andH. W. Beams:In vitro control of growing chick nerve fibers by applied electric currents. J. cell. comp. Physiol.27, 139–157 (1946).Google Scholar
  75. Minkin, C., B. Poulton, andWm. Hoover: The effect of direct current stimulation on femora of growing rabbits. (Abstract) Fed. Proc.26, No 2, 890 (1967).Google Scholar
  76. Nakai, J.: Skeletal muscle in organ culture. Exp. Cell Res.40, 307–315 (1965).PubMedGoogle Scholar
  77. Neuman, W. F.: In: Ion exchangers in organic and biochemistry (C. Caliman andT. R. E. Kressman, eds.); Bone as an ion exchange system, p. 197–212. New York: Interscience Publisher, Inc. 1957.Google Scholar
  78. Noguchi, K.: Study on dynamic callus and electric callus. J. Jap. Orthop. Surg. Soc.31, 1–24 (1957).Google Scholar
  79. Paff, G. H.: Influence of pH on growth of bone in tissue culture. Proc. Soc. exp. Biol. (N.Y.)68, 288–293 (1948).Google Scholar
  80. Paterson, D.: Crystal faults as electronic devices. New Scientist32, 31–32 (1966).Google Scholar
  81. Picton, H. D.: Some responses ofDrosophila to weak magnetic and electrostatic fields. Nature (Lond.)211, 303–304 (1966).Google Scholar
  82. Pidot, A. I., andJ. M. Diamond: Streaming potentials in a biological membrane. Nature (Lond.)201, 701–702 (1964).Google Scholar
  83. Ramachandran, G. N., andG. Kartha: Structure of collagen. Nature (Lond.)174, 269–270 (1954).Google Scholar
  84. Rinder, W., andR. Nelson: Piezojunctions: elements of a new class of semiconductor devices. Proc. IRE50, 2106 (1962).Google Scholar
  85. Rowland, R. E.: Exchangeable bone calcium. Clin. Orthop.49, 233–248 (1966).PubMedGoogle Scholar
  86. Salo, T. P.: The preparation of ichthyocol collagen by electrodeposition. Arch. Biochem.28, 68–72 (1950).PubMedGoogle Scholar
  87. Schryver, H. F. andR. B. L. Gwatkin: Effect of alkaline media on the growth of embryonic chick tibiotarsi in organ culture. Nature (Lond.)202, 822–823 (1964).Google Scholar
  88. Sedlin, E. D. A rheologic model for cortical bone. Acta orthop. scand., Suppl.83, 77p. (1965).Google Scholar
  89. Shamos, M. H., andL. S. Lavine: Physical basis for bioelectric effects in mineralized tissues. Clin. Orthop.35, 177–188 (1964).PubMedGoogle Scholar
  90. ——: Letters to the Editor. Clin. Orthop.43, 254–255 (1965).PubMedGoogle Scholar
  91. ——: Piezoelectricity as a fundamental property of biological tissues Nature (Lond.)213, 267–269 (1967).Google Scholar
  92. ——, andM. I. Shamos: Piezoelectric effect in bone. Nature (Lond.)197, 81 (1963).Google Scholar
  93. Sheridan, J. D.: Electrophysiological study of special connections between cells in the early chick embryo. J. Cell Biol.31, C1-C5 (1966).PubMedGoogle Scholar
  94. Shubnikov, A. V.: Quoted by V. A. Bazenhov 1961 (1946).Google Scholar
  95. Smith, S. D.: Induction of partial limb regeneration inRana pipiens by galvanic stimulation. Anat. Rec.158, 89–98 (1967).PubMedGoogle Scholar
  96. Solomons, C. C., D. Shuster, andA. Kwan: Biochemical effects of mechanical stress. Aerospace Med.36, 33–34 (1965).Google Scholar
  97. Spruch, G. M., andM. H. Shamos: Light induced effects in bone. Nature (Lond.)212, 1586–1587 (1966).Google Scholar
  98. Tasaki, I., I. Singer, andT. Takenaka: Effects of internal and external ionic environment on excitability of squid giant axon. J. gen. Physiol.48, 1095–1123 (1965).PubMedGoogle Scholar
  99. Teorell, T.: Electrokinetic considerations of mechanoelectrical transduction. Ann. N.Y. Acad. Sci.137, 950–966 (1966).PubMedGoogle Scholar
  100. Termine, J. D., andA. S. Posner: Amorphous/crystalline interrelationships in bone mineral. Calc. Tiss. Res.1, 8–23 (1967).Google Scholar
  101. Thompson, D'Arcy: On growth and form. ed. 2, vol. 2 (reprinted 1963), p. 958–1025. Cambridge: Cambridge University Press 1936.Google Scholar
  102. Tischendorf, F.: Das Verhalten der haversschen Systeme bei Belastung. Arch. Entwickl.-Mech. Org.145, 318–332 (1951).Google Scholar
  103. Weiss, L., andE. Mayhew: The cell periphery. New Engl. J. Med.276, 1354–1362 (1967).PubMedGoogle Scholar
  104. Weiss, P.: In: Wound healing. Biological foundation of repair at the cellular level. Washington, D. C.: National Academy of Sciences-National Research Council 1966.Google Scholar
  105. Wolff, J.: Das Gesetz der Transformation der Knochen. 152 p. Berlin: A. Hirschwald 1892.Google Scholar
  106. Yasuda, I.: On the piezoelectric activity of bone. J. Jap. Orthop. Surg. Soc.28, 267–269 (1954) [in Japanese].Google Scholar
  107. —,K. Noguchi, andT. Sata: Dynamic and electric callus. Proc. Jap. Orthop. Surg. Soc. (Abstract) J. Bone Jt Surg.37-A, 1292–1293 (1955).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • C. Andrew L. Bassett
    • 1
    • 2
  1. 1.Orthopaedic Research LaboratoriesColumbia University College of Physicians and SurgeonsNew YorkUSA
  2. 2.New York Orthopaedic HospitalColumbia Presbyterian Medical CenterNew York

Personalised recommendations