The Journal of Membrane Biology

, Volume 61, Issue 2, pp 67–73 | Cite as

Effects of catecholamines on electrolyte transport in cortical collecting tubule

  • Yasuhiko Iino
  • Julia L. Troy
  • Barry M. Brenner


We examined the direct effects of isoproterenol (ISO) andl-norepinephrine (NE) on electrolyte transport in isolated rabbit cortical collecting tubules (CCT) perfusedin vitro. The addition of either ISO (10−6m) or NE (10−6m) to the bath decreased transepithelial potential difference (PD), on average by 51 and 25%, respectively. These effects of ISO and NE were abolished by prior addition of the β-adrenergic blocker,l-propranolol. ISO (10−5m) had no effect from lumen. Also, osmotic water permeability was not influenced by ISO. Ouabain and ISO had additive effects on PD. Elimination of chloride from both perfusate and bath, or addition of acetazolamide, abolished the effect of ISO on PD. Although isotopic sodium flux from lumen to bath was not influenced by ISO, chemical net chloride absorption increased from 1.1±0.4 to 2.7±0.6 peq·cm−1·sec−1 (n=8,p<0.005). In conclusion, both ISO and NE are capable of decreasing PD in rabbit CCT perfusedin vitro. This effect is mediated by β-adrenergic receptors and is accompanied by the increase in net chloride absorption. Although the mechanism responsible for this decrease in PD with ISO is unclear, active chloride absorption, active hydrogen secretion, or membrane chloride permeability changes may account for the effects of ISO.

Key words

Norepinephrine isoproterenol chloride transport water permeability exchange diffusion transport β-adrenergic receptor rabbit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barry, P.H., Diamond, J.M. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93–122CrossRefGoogle Scholar
  2. 2.
    Bello-Reuss, E., Colindres, R.E., Pastoriza-Munoz, E., Mueller, R.A., Gottshalk, C.W. 1975. Effects of acute unilateral renal denervation in the rat.J. Clin. Invest. 56:208–217PubMedGoogle Scholar
  3. 3.
    Bourdeau, J.E., Burg, M.B. 1979. Voltage dependence of calcium transport in the thick ascending limb of Henle's loop.Am. J. Physiol. 236:F357-F364PubMedGoogle Scholar
  4. 4.
    Burg, M.B., Grantham, J.J., Abramow, M., Orloff, J. 1966. Preparation and study of fragments of single rabbit nephrons.Am. J. Physiol. 210:1293–1298PubMedGoogle Scholar
  5. 5.
    Burg, M.B., Green, N. 1973. Function of the thick ascending limb of Henle's loop.Am. J. Physiol. 244:659–668Google Scholar
  6. 6.
    Burg, M., Green, N. 1977. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules.Am. J. Physiol. 233:F307-F314PubMedGoogle Scholar
  7. 7.
    Burg, M.B., Orloff, J. 1970. Electrical potential differences across proximal convoluted tubules.Am. J. Physiol. 219:1714–1716PubMedGoogle Scholar
  8. 8.
    Chabardes, D., Imbert, M., Montegut, M., Clique, A., Morel, F. 1975. Catecholamine sensitive adenylate cyclase activity in different segments of the rabbit nephron.Pfluegers Arch. 316:9–15CrossRefGoogle Scholar
  9. 9.
    DiBona, G.F. 1978. Neural control of renal tubular sodium reabsorption in the dog.Fed. Proc. 37:1214–1217PubMedGoogle Scholar
  10. 10.
    DuBois, R., Verniory, A., Abramow, M. 1976. Computation of the osmotic water permeability of perfused tubule segments.Kidney Int. 10:478–479PubMedGoogle Scholar
  11. 11.
    Frindt, G., Burg, M.B. 1972. Effect of vasopressin on sodium transport in renal cortical collecting tubules.Kidney Int. 1:224–231PubMedGoogle Scholar
  12. 12.
    Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8PubMedGoogle Scholar
  13. 13.
    Grantham, J.J., Burg, M.B. 1966. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubule.Am. J. Physiol. 221:255–259Google Scholar
  14. 14.
    Grantham, J.J., Burg, M.B., Orloff, J. 1970. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules.J. Clin. Invest. 49:1815–1826PubMedGoogle Scholar
  15. 15.
    Gross, J.B., Jacobson, H.R., Kawamura, S., Kokko, J.P. 1975. Demonstration of electrogenic chloride transport in rabbit cortical collecting tubule.Am. Soc. Nephrol. 8:81 (Abstr.)Google Scholar
  16. 16.
    Hanley, M.J., Kokko, J.P., Gross, J.B., Jacobson, H.R. 1980. Electrophysiologic study of the cortical collecting tubule of the rabbit.Kidney Int. 17:74–81PubMedGoogle Scholar
  17. 17.
    Iino, Y., Burg, M.B. 1979. Effect of parathyroid hormone on bicarbonate absorption by proximal tubulein vitro.Am. J. Physiol. 236:F387-F391PubMedGoogle Scholar
  18. 18.
    Iino, Y., Imai, M. 1978. Effect of prostaglandins on Na transport in isolated collecting tubules.Pfluegers Arch. 373:125–132CrossRefGoogle Scholar
  19. 19.
    Imai, M. 1979. The connecting tubule: A functional subdivision of the rabbit distal nephron segments.Kidney Int.15:346–356PubMedGoogle Scholar
  20. 20.
    Imbert, M., Chabardes, D., Montegut, M., Clique, A., Morel, F. 1975. Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule.Pfluegers Arch. 357:173–186CrossRefGoogle Scholar
  21. 21.
    Klyce, S.D., Neufeld, A.H., Zadunaisky, J.A. 1973. The activation of chloride transport by epinephrine and db cyclic AMP in the cornea of the rabbit.Invest. Opthalmol. 12:127–139Google Scholar
  22. 22.
    McKinney, T.D., Burg, M.B. 1977. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loadsin vivo on transportin vitro.J. Clin. Invest. 10:766–768Google Scholar
  23. 23.
    Ramsay, J.A., Brown, H.J., Crogham, P.C. 1955. Electrometric titration of chloride in small volumes.J. Exp. Biol. 32:822–829Google Scholar
  24. 24.
    Rayson, B.M.R., Ray, C., Morgan, T. 1978. A study of the interaction of catecholamines and antidiuretic hormone on water permeability and the cyclic AMP system in isolated papillae of the rat.Pfluegers Arch. 373:99–103CrossRefGoogle Scholar
  25. 25.
    Rector, F.C., Clapp, J.C. 1962. Evidence for active chloride reabsorption in the distal renal tubule of the rat.J. Clin. Invest. 41:101–107PubMedGoogle Scholar
  26. 26.
    Roch, A.S., Kokko, J.P. 1973. Sodium chloride and water transport in the medullary thick ascending limb of Henle.J. Clin. Invest. 52:612–623PubMedGoogle Scholar
  27. 27.
    Schafer, J.A., Andreoli, T.E. 1972. Cellular constraints to diffusion: The effect of antidiuretic hormone on water flows in isolated mammalian collecting tubule.J. Clin. Invest. 51:1264–1278PubMedGoogle Scholar
  28. 28.
    Stokes, J.B., 1979. Effect of prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle.J. Clin. Invest. 64:495–502PubMedGoogle Scholar
  29. 29.
    Stoner, L.C., Burg, M.B., Orloff, J. 1974. Ion transport in cortical collecting tubule: Effect of amiloride.Am. J. Physiol. 227:453–459PubMedGoogle Scholar
  30. 30.
    Watlington, C.O., Jessee, S.D., Baldwin, G. 1977. Ouabain, acetazolamide, and Cl flux in isolated frog skin: Evidence for two distinct active Cl transport mechanisms.Am. J. Physiol. 232:F550-F558PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Yasuhiko Iino
    • 1
  • Julia L. Troy
    • 1
  • Barry M. Brenner
    • 1
  1. 1.Laboratory of Kidney and Electrolyte Physiology, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBoston

Personalised recommendations