Acta Mathematicae Applicatae Sinica

, Volume 4, Issue 4, pp 345–354 | Cite as

Horseshoe motions and subharmonics of the equation of J-J type with small parameters

  • Shen Wenxian 


In this paper, we have proved the existence of horseshoe motions and subharmonic motions of the equation of a Josephson junction with small parameters by using Melnikov's method.


Small Parameter Josephson Junction Math Application Subharmonic Motion Horseshoe Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. N. Belgkh, N. F. Pedersen and O. H. Soerensen, “Shunted-Josephson-Junction Model”, Phy. Rev., B16: 1 (1977), 4853–4871.Google Scholar
  2. [2]
    R. L. Kautz, “Chaotic States of Bf-Biased Josephson Junction”, J. Appl. Phys.,52 (1981), 6241.CrossRefGoogle Scholar
  3. [3]
    I. Goldrish, Y. Imry and G. Wassenman, E. Ben-Jacob, “Studies of the Intermittent-Type Chaos in Ac- and Dc-Driven Josephson Junctions”, Phy. Rev., B29: 3 (1984), 1218–1231.Google Scholar
  4. [4]
    D. R. He, W. J. Yeh and Y. H. Kao, “Transition from Qusiperiodicity to Chaos in a Josephson-Junction Analog”, Phy. Rev., B30 (1984), 197.Google Scholar
  5. [5]
    Liu Zhangju and Hsu Lian Chau, “Periodic Pertubations of Phase-Locking Loops”, Ann. Math. Sinica,7(A): 6 (1986), 699–704.Google Scholar
  6. [6]
    J. Guckenheimer and P. Holmes, “Nonlinear Oscillation, Dynamical Systems and Bifurcations of Vector Fields”, Springer-Verlag, New York Berlin Heideberg Tokyo, 42 (1984), 184–212.Google Scholar

Copyright information

© Science Press, Beijing, China and Allerton Press, Inc., New York, U.S.A. 1988

Authors and Affiliations

  • Shen Wenxian 
    • 1
  1. 1.Peking UniversityChina

Personalised recommendations