Skip to main content
Log in

On the validity of Boltzmann's distribution law for the charges of aerosol particles in electrical equilibrium

  • Published:
Geofisica pura e applicata Aims and scope Submit manuscript

Summary

The validity ofBoltzmann's energy distribution law as applied to the charge distribution of monodisperse aerosols, i.e. aerosols which contain particles of one size only, was studied with improved equipment now available.

Since monodisperse aerosols with particle size of about 10−6 cm cannot yet be produced and because aerosols in general contain particles of different sizes, polydisperse aerosols stored in a large gasometer were used for the investigation. The composition and the average radius of these aerosols heterogeneous in particle size were determined by the Exhaustion Method employing a diffusion battery without end-pieces or connecting tubing.

The experimental curve found for the ratio of the uncharged (N 0) to the charged (N) nuclei versus radius (r) of the particles deviates for all investigated radii between 0.5 and 4.0·10−6 cm from the theoretical curve of a monodisperse aerosol computed according to the Boltzmann law. For radii smaller than about 1.4·10−6 cmN 0/N is smaller than that given by Boltzmann's law, for radii greater than 1.4·10−6 cm larger, or, in other words, forr<1.4·10−6 cm the number of charged nuclei found in the aerosols investigated is greater than that predicted byBoltzmann's law, and forr>1.4·10−6 cm smaller.

The deviations from the theoretical curve forr>1.4·10−6 cm can be fully explained by the polydispersity of the aerosols used; forr<1.4·10−6 cm the deviations are too big to be attributed to polydispersity. From this it must be concluded thatBoltzmann's distribution law is not valid for the charge distribution of homogenous aerosols containing nuclei with radii smaller than about 1.4·10−6 cm.

The equivalent radius as deduced from a substitute monodisperse aerosol in charge equilibrium for which theBoltzmann law is assumed valid, deviates in the range of 1.0·10−6<r<3.0·10−6 cm (or 90%>100N 0/Z>55%) on the average by up to 35% from the actual mean radius of the investigated polydisperse aerosols computed from the radii of their singly sized components.

Zusammenfassung

Die Gültigkeit desBoltzmannschen Gesetzes der Energieverteilung für die Ladungsverteilung von monodispersen Aerosolen, das heisst Aerosolen, welche Teilchen von nur einer Grösse enthalten, wurde mit den jetzt zur Verfügung stehenden verbesserten Mitteln studiert.

Da monodisperse Aerosole mit Teilchengrössen von ungefähr 10−6 cm noch nicht erzeugt werden können und Aerosole im allgemeinen Teilchen von verschiedenen Grössen enthalten, wurden für die jetzige Untersuchung polydisperse Aerosole, welche in einem grossen Gasometer gespeichert waren, benützt. Die Zusammensetzung und der mittlere Radius dieser Aerosole mit heterogener Teilchengrösse wurden nach der Exhaustions-Methode unter Benützung einer Diffusionsbatterie ohne Endstücke oder Verbindungsröhren bestimmt.

Die experimentell gefundene Kurve, welche das Verhältnis der ungeladenen (N 0) und geladenen (N) Kerne als Funktion des Radius (r) darstellt, weicht für alle untersuchten Radien zwischen 0.5 und 4.0·10−6 cm von der theoretischen Kurve eines monodispersen Aerosols, wie sie nachBoltzmann's Gesetz berechnet wird, ab. Für Radien kleiner als ungefähr 1.4·10−6 cm ist das VerhältnisN 0/N kleiner als es durchBoltzmann's Gesetz gegeben wird, für Radien grössen als 1.4·10−6 cm grösser oder, mit anderen Worten, fürr<1.4·10−6 cm ist die Zahl der geladenen Teilchen, die in den untersuchten Aerosolen gefunden wurde, grösser als die vonBoltzmann's Gesetz vorausgesagte, und fürr>1.4·10−6 cm kleiner.

Die Abweichungen von der theoretischen Kurve fürr>1.4·10−6cm können vollkommen durch die Polydispersität der benützten Aerosole erklärt werden; fürr<1.4·10−6 cm sind die Abweichungen zu gross, als dass sie der Polydispersität zugeschrieben werden könnten. Daraus muss geschlossen werden, dassBoltzmann's Verteilungsgesetz für die Ladungsverteilung eines homogenen Aerosols, welches Kerne mit Radien kleiner als ungefähr 1.4·10−6 cm enthält, nicht gültig ist.

Der äquivalente Radius, wie er von einem im Ladungsgleichgewicht befindlichen, monodispersen Ersatz-Aerosol, für welchesBoltzmann's Gesetz als gültig angenommen wird, abgeleitet werden kann, weicht im Bereich von 1.0·10−6<r<3.0·10−6 cm (oder 90%>N 0/Z>55%) durchschnittlich bis zu 35% vom tatsächlichen mittleren Radius des untersuchten polydispersen Aerosols ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rich T. A., Pollak L. W. &Metnieks A. L.:Estimation of average size of submicron particles from the number of all and uncharged particles. Geofisica pura e applicata, Milano; 44, 233–241 (1959).

    Article  Google Scholar 

  2. Keefe D., Nolan P. J. &Rich T. A.:Charge equilibrium in aerosols according to the Boltzmann law. Proc. Roy. Irish Acad., Dublin; 60 A 4, 27–45 (1959). In the heading of this paper an unfortunate printing error occurs: the paper was not read on 13 April 1958 but on 13 April 1959.

    Google Scholar 

  3. Nolan P. J. &Kennan E. L.:Condensation nuclei from hot platinum: size, coagulation coefficient and charge-distribution. Ibidem ; 52 A 13, 171–190 (1949).

    Google Scholar 

  4. Fuks N. A.:The mechanics of aerosols, Moscow 1955. Translated from the Russian by M S P. E. Lachowics 1958 (C W L Special Publ. 4 to 12, Technical Information Division, Directorate of Technical Services, U.S. Army Chemical Warfare Laboratories, Army Chemical Center, Maryland).

  5. Metnieks A. L. &Pollak L. W.:Instruction for use of photo-electric condensation nucleus counters, their care and maintenance together with calibration and auxiliary tables. Geophys. Bull. No. 16, School of Cosmic Physics, Dublin Institute for Advanced Studies; Dublin 1959.

    Google Scholar 

  6. Pollak L. W. & Metnieks A. L.:Intrinsic calibration of the photo-electric condensation nucleus counter Model 1957with convergent light-beam. Technical (Scientific) Note No. 9, Contract USAF 61 (052)-26; Dublin 1960.

  7. Pollak L. W. &Daly J.:A diffusion battery without end-pieces or connecting tubing. Geofisica pura e applicata, Milano; 45, 249–257 (1960).

    Article  Google Scholar 

  8. Pollak L. W. &Metnieks A. L.:On the determination of the diffusion coefficient of heterogeneous aerosols by the dynamic method. Ibidem ; 37, 183–190 (1957).

    Article  Google Scholar 

  9. Metnieks A. L. &Pollak L. W.:On the particle size analysis of polydisperse aerosols using a diffusion battery and the exhaustion method. Geophys. Bull. No. 21, School of Cosmic Physics, etc.; Dublin 1962.

    Google Scholar 

  10. Rich T. A.:The average size of submicron particles. Intern. Journ. Air Pollution, London; 1, 288–292 (1959).

    Google Scholar 

  11. Pollak L. W. &Metnieks A. L.:The appraoch to charge equilibrium in a stored aerosol during aging. Geofisica pura e applicata, Milano; 51, 225–236 (1962).

    Article  Google Scholar 

  12. Pollak L. W. & Metnieks A. L.:The diffusion coefficient of large ions. Recent Advances in Atmospheric Electricity, London 1959, 43–54.

  13. Rich T. A., Pollak L. W. &Metnieks A. L.:Experiments with condensation nucleus size spectrometers. Geofisica pura e applicata, Milano; 46, 145–163 (1960).

    Article  Google Scholar 

  14. Nolan J. J., Nolan P. J. &Gormley P. G.:Diffusion and fall of atmospheric condensation nuclei. Proc. Roy. Irish Acad., Dublin; 45 A 4, 47–63 (1938).

    Google Scholar 

  15. Gormley P. G. &Kennedy M.:Diffusion from a stream flowing through a cylindrical tube. Ibidem ; 52 A 12, 163–169 (1949).

    Google Scholar 

  16. Metnieks A. L. & Pollak L. W.:Tables and graphs for use in aerosol physics, Part I. Mobility v. radius and vice versa. Geophys. Bull. No. 19 of he School of Cosmic Physics; Dublin, 1961.

  17. Metnieks A. L. & Pollak L. W.:Tables and graphs for use in aerosols physics, Part II. Number of uncharged particles in per cent of total number of particles v. radius and vice versa. Ibidem; Proc. Roy. Irish Acad., Dublin; Geophys. Bull. No. 20; Dublin, 1961.

  18. Glasstone S.:Textbook of physical chemistry. Macmillan & Co., London; 1960 pp. 273 & 274.

    Google Scholar 

  19. Fürth R.:On the theory of diffusion and sedimentation of condensation nuclei in cylindrical containers. Geofisica pura e applicata, Milano; 31, 80–89 (1955).

    Article  Google Scholar 

  20. Pollak L. W. et al. &Fürth R.:Report on the determination of the diffusion coefficient using the static and dynamic methods. Ibidem ; 36, 70–75 (1957).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research reported in this article has been supported in part by the Geophysics Research Directorate of the Air Force Cambridge Research Laboratories, through the European Office of the Air Force Research Division, United States Air Force under Contract AF 61(052)-26, by the United States Department of Army, through its European Research Office, Contract DA-91-591-EUC-1282 & 1657 and by the Instrumentation Engineering Physics & Analysis Laboratory of the General Electric Co., Schenectady, New York under Retainer Agreement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollak, L.W., Metnieks, A.L. On the validity of Boltzmann's distribution law for the charges of aerosol particles in electrical equilibrium. Geofisica Pura e Applicata 53, 111–132 (1962). https://doi.org/10.1007/BF02007116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02007116

Keywords

Navigation