Skip to main content
Log in

Quantum gaussian processes

  • Published:
Acta Mathematicae Applicatae Sinica Aims and scope Submit manuscript

Abstract

In this paper, we will define the quantum Gaussian processes based on ordinary Gaussian processes by means of reproducing kernel Hilbert spaces, and investigate the relation between their stochastic properties. Particularly, we are interested in Brownian bridges and quantum Ornstein-Uhlenbeck processes. We are even able to construct each of them in two different ways: to construct quantum processes based on ordinary Brownian bridges (Ornstein-Uhlenbeck processes resp.) or to solve the quantum S.D.E. driven by quantum Brownian motions. But essentially they are the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Barnett, R.F. Streater and I.F. Wilde. The Ito-Clifford Integrals.J. Funct. Anal., 1982, 48: 172–212.

    Article  MATH  MathSciNet  Google Scholar 

  2. O. Bratteli and D.W. Robbinaon. Operators Algebras and Quantum Statistical Mechanics. Vol. 1, 2, Springer-Verlag, 1979.

    Google Scholar 

  3. K.L. Chung. Lectures from Markov Processes to Brownian Motions. Springer-Verlag, 1980.

  4. C.D. Cushen and R.L. Hudson. A Quantum Mechanics Central Limit Theorem.J. Appl. Prob., 1971, 8: 454–469.

    MATH  MathSciNet  Google Scholar 

  5. J. Diximer. Von-Neumann Algebras. North-Holland, 1981.

  6. S.W. He. Lectures of RKHS. Lectures.

  7. R.L. Hudson. Quantum Mechanics Wiener Processes.J. Multivar. Anal., 1978, 71: 107–123.

    Google Scholar 

  8. R.L. Hudson and K.R. Parthasarathy. Construction of Quantum Diffusions. In: Quantum Probability and Applications to the Theory of Irreversible Processes. Lectures Notes, 1055, 1982.

  9. R.L. Hudson and K.R. Parthasrathy. Quantum Ito's Formula and Its Evolution.Commu. Math. Phy., 1984, 93: 301–323.

    Article  MATH  Google Scholar 

  10. N. Lkeda and S. Watanable. Mallivian Calculus. Lectures.

  11. N. Ikeda and S. Watanable. Stochastic Differential Equations and Diffusion Processes. North-Holland, 1981.

  12. J. Neveu. Processus Aleatoires Gaussiens. Univ. Paris VI, Paris.

  13. P.A. Meyer. Elements de Probabilites Quantiques. Exposes I a V (1984–1985) Univ. L. Pasteur, Strasbourg.

  14. K.R. Parthasarathy and K.B. Shina. Stochastic Integral Representation of Bounded Quantum Martingales in Fock Space.J. Funct. Anal., 1986, 67: 126–151.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Segal. A Non-commutative Extenuation of Abstract Integrations.Ann. Math., 1953, 57: 306–457.

    Article  Google Scholar 

  16. M. Takesaki. Conditional Expectations in Von-Neumann Algebras.J. Funct. Anal., 1972, 9: 306–321.

    Article  MATH  MathSciNet  Google Scholar 

  17. I.F. Wilde. The Free Fermion Field as a Markov Field.J. Funct. Anal., 1974, 15: 12–21.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.A. Yan. Martingales and Stochastic Integrals. 1980.

  19. F.J. Yeadon. Non-commutativeL P-space.Math. Proc. Camb. Phil. Soc., 1975, 77: 86–100.

    MathSciNet  Google Scholar 

  20. K. Yosida. Functional Analysis. Springer-Verlag, 1980.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research is supported in part by the National Natural Science Foundation of China and National Science Foundation of USA under Grant DDM-8721709.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y. Quantum gaussian processes. Acta Mathematicae Applicatae Sinica 10, 315–327 (1994). https://doi.org/10.1007/BF02006861

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02006861

Key words

Navigation