Skip to main content
Log in

Lyapunov exponent and rotation number for stochastic Dirac operators

  • Published:
Acta Mathematicae Applicatae Sinica Aims and scope Submit manuscript

Abstract

In this paper, we consider the stochastic Dirac operator

$$L_\omega = \left( {\begin{array}{*{20}c} 0{ - 1} \\ 10 \\ \end{array} } \right)\frac{d}{{dt}} - \left( {\begin{array}{*{20}c} {p(T_t \omega )}0 \\ { 0}{q(T_t \omega )} \\ \end{array} } \right)$$

on a polish space (Θ, β,P). The relation between the Lyapunov index, rotation number and the spectrum ofL ω is discussed. The existence of the Lyapunov index and rotation number is shown. By using the W-T functions and W-function we prove the theorems forL ω as in Kotani [1], [2] for Schrödinger operators, and in Johnson [5] for Dirac operators on compact space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kotani, Lyapunov Indices Determine Absolutely Continuous Spectra of Stationary Random One Dimensional Schrödinger Operators, Pro. Taniguchi Sym. S. A. Katata, Kyoto, 1982, 225–247.

  2. S. Kotani, Support Theorems for Random Schrödinger Operators,Commu. Math. Phs.,97 (1985), 443–452.

    Google Scholar 

  3. V. Oseledec, A Multiplicative Ergodic Theorem, Lyapunov Characteristic Numbers for Dynamical Systems,Trans. Moscow Math. Soc.,19 (1968), 197–231.

    Google Scholar 

  4. R. Johnson, Exponential Dichotomy, Rotation Number and Linear Differential Operators with Bounded Coefficients,J. Diff. Eq.,61 (1986), 54–78.

    Google Scholar 

  5. R. Giachetti, R. Johnson, The Floquent Exponent for Two Dimensional Linear Systems with Bounded Coefficients,J. Math. Pures et Appl.,65 (1986), 93–117.

    Google Scholar 

  6. B.M. Levitan, I.S. Sargsjan, Introduction to Spectral Theory,Trans. Math. Monographs,39 (1976), AMS Providence.

  7. B. Simmon, Kotani Theory for One Dimensional Stochastic Jacobi Matrices,Commu. Math. Phs.,89 (1983), 227–234.

    Google Scholar 

  8. P.L. Duren, Theory ofH p Spaces, Pure. Applied Math., Academic Press, Vol. 38, 1970.

  9. M. Ablowitz, D. Kaup, A. Newell, H. Segur, The Inverse Scattering Ttransform: Fourier Analysis for Nonlinear Systems,Stud. in Appl. Math.,53 (1974), 249–315.

    Google Scholar 

  10. M.G. Gasymov, B.M. Levitan, The Inverse Problem for a Dirac Operator,Doklady Akad. Nauk. USSR,167 (1966), 967–970.

    Google Scholar 

  11. E. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    Google Scholar 

  12. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, F., Qian, M. Lyapunov exponent and rotation number for stochastic Dirac operators. Acta Mathematicae Applicatae Sinica 8, 333–347 (1992). https://doi.org/10.1007/BF02006742

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02006742

Keywords

Navigation