Advertisement

Acta Mathematicae Applicatae Sinica

, Volume 7, Issue 3, pp 257–271 | Cite as

Spectral-finite element method for solving two-dimensional vorticity equations

  • Guo Benyu 
  • Cao Weiming 
Article

Abstract

In this paper, we construct a spectral-finite element scheme for solving semi-periodical two-dimensional vorticity equations. The error between the genuine solution and approximate solution is estimated strictly. The numerical results show the advantages of such a method. The technique used in this paper can be easily generalized to three-dimensional problems.

Keywords

Approximate Solution Math Application Element Scheme Vorticity Equation Genuine Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Roache, P.J., Computational Fluid Dynamics, 2nd edition, Hermosa Publishers, 1976.Google Scholar
  2. [2]
    Raviart, P.A., Approximation numèrique des phenomenes de diffusion convection, Méthods d'éléments finis en méchanque des fluids, Cours a l'École d'été d'analyse numérique, 1979.Google Scholar
  3. [3]
    Guo Ben-yu, A Class of Difference Schemes for Two-dimensional Viscous Vorticity Equations,Acta Mathematica Sinica,17(1974), 242–258.Google Scholar
  4. [4]
    Guo Ben-yu, Error Estimation of Spectral Method for Solving Two-dimensional Vorticity Equations,J. Comp. Math.,1(1983), 353–362.Google Scholar
  5. [5]
    Guo Ben-yu, Spectral-difference Method for Solving Two-dimensional Vorticity Equations,J. Comp. Math.,6(1988), 238–257.Google Scholar
  6. [6]
    Canuto, C., Maday, Y., Quarteroni, A., Analysis of the Combined Finite Element and Fourier Interpolation,Numer. Math.,39(1982), 205–220.CrossRefGoogle Scholar
  7. [7]
    Canuto, C., Maday, Y., Quarteroni, A., Combined Finite Element and Spectral Approximation of the Navier-Stokes Equations, Numer. Math.,44(1984), 201–217.CrossRefGoogle Scholar
  8. [8]
    Mercier, B., Raugel, G., Résolution d'un probléme aux limites dans un ouvert axisymétrique par éléments finis enr, z et séries de Fourier enθ, RAIRO Numer. Anal.,16(1982), 405–461.Google Scholar
  9. [9]
    Ciarlet, P.G., The Finite-Element Method for Elliptic Problems, North-Holland, 1978.Google Scholar
  10. [10]
    Grisvard, P., Equations Differentielles Abstraites,Ann. Sci. Ecole Norm. Sup.,4 (1969), 311–395.Google Scholar

Copyright information

© Science Press, Beijing, China and Allerton Press, Inc., New York, U.S.A. 1991

Authors and Affiliations

  • Guo Benyu 
    • 1
  • Cao Weiming 
    • 1
  1. 1.Shanghai University of Science and TechnologyShanghai

Personalised recommendations