Skip to main content
Log in

Opioids stimulate sarcolemmal NAD(P)H-vanadate dehydrogenase activity

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The present study demonstrates that the bovine cardiac sarcolemma possesses an NAD(P)H dehydrogenase activity which is able to oxidize both NADH and NAD(P)H in the presence of vanadate as an electron acceptor.

The NADH dehydrogenase activity was significantly higher than the NAD(P)H dehydrogenase activity and both of them were almost completely inhibited by superoxide dismutase and atebrin and markedly reduced by the addition of the protonophore 2,4-dinitrophenol. The incubation of the sarcolemma in the presence of 10−10, 10−9, 10−8 M methionine-enkephalin, a prevalent δ-opioid receptor agonist, or dynorphin A (1–17), a prevalent κ-receptor agonist, produced a dose-dependent increase in the NAD(P)H dehydrogenase activity, with 10−10 and 10−9 M dynorphin A (1–17) more effective than the corresponding doses of methionine-enkephalin. The preincubation of the sarcolemma in the presence of superoxide-dismutase, atebrin or 2,4-dinitrophenol strongly inhibited the opioid-stimulated dehydrogenase activity.

The stimulatory action elicited by 10−8 M methionine-enkephalin or dynorphin A (1–17) was completely antagonized by 10−8 M naloxone or Mr 1452, respectively, whilst 10−8 M naloxone exerted only a partially antagonistic action against the effect produced by 10−8 M dynorphin A (1–17), significantly more accentuated than the action of 10−8 M Mr 1452 versus the same dose of methionine-enkephalin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson NN, Touster O (1974) Isolation of rat liver plasma membrane fragments in isotonic sucrose. In: Fleischer S, Packer L (eds) Method Enzymol. Vol 31, Academic Press, New York, pp 90–102

    Google Scholar 

  2. Bowen WD, Hellewell SB, Kelemen M, Huey R, Stewart D (1987) Affinity labeling of δ-opiate receptors using (D-Ala2, Leu5, Cys6) Enkephalin. J Biol Chem 262:13434–13439

    PubMed  Google Scholar 

  3. Brain RD, Freeberg JA, Weiss CV, Briggs WR (1977) Blue-light induced absorbance changes in membrane fractions from corn and neurospora. Plant Physiol 59:948–952

    Google Scholar 

  4. Clô C, Muscari C, Tantini B, Pignatti C, Bernardi P, Ventura C (1985) Reduced mechanical activity of perfused rat heart following morphine or enkephalin peptides administration. Life Sci 37:1327–1333

    Article  PubMed  Google Scholar 

  5. Colbeau A, Nachbaur J, Vignais PM (1971) Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta 249:462–492

    PubMed  Google Scholar 

  6. Crane FL, Low H (1976) NADH oxidation in liver and fat cell plasma membranes. FEBS Lett 68:153–156

    Article  PubMed  Google Scholar 

  7. Crane FL, Goldenberg H, Morrè DJ, Low H (1979) Dehydrogenases of the plasma membranes. In: Roodyn DB (ed) Subcellular Biochemistry Vol 6, Plenum Press, New York, pp 345–399

    Google Scholar 

  8. Dhalla NS, McNamara DB, Anand MB (1976) Heart sarcolemma as a dynamic exictable membrane. In: Roy PE, Dhalla NS (eds) Recent advances in Studies on Cardiac Structure and Metabolism, The Sarcolemma, Vol 9, University Park Press, Baltimore, pp 1–19

    Google Scholar 

  9. Dhalla NS, Smith CI, Pierce GN, Elimban V, Makino N, Khatter JC (1986) Heart sarcolemma cation pumps and binding sites. In: Rupp H (ed) The regulation of heart function. Thieme Inc, New York, pp 121–136

    Google Scholar 

  10. Eldan M, Mayer AM (1972) Evidence for the activation of NADH-Cytochrome c reductase during germination of lettuce. Plant Physiol 26:67–72

    Google Scholar 

  11. Erdmann E, Krawietz W, Phillip G, Hackbarth I, Schmitz W, Scholz H, Crane FL (1979) Purified cardiac cell membranes with high Na+−K+ ATPase activity contain significant NADH-vanadate reductase activity. Nature 282:335–336

    Article  PubMed  Google Scholar 

  12. Erdmann E, Werdan K, Krawietz W, Lebuhn M, Christl S (1980) Significance of NADH-vanadateoxidoreductase of cardiac and erythrocyte cell membranes. Basic Res Cardiol 75:460–465

    Article  PubMed  Google Scholar 

  13. Gayda DP, Crane FL, Morrè DJ, Low H (1977) Hormone effects on NADH oxidizing enzymes of plasma membranes of rat liver. Proc Indiana Acad Sci 86:385–390

    Google Scholar 

  14. Gould JM, Cramer WA (1977) Relationship between oxygen-induced proton efflux and membrane energization in cells of escherichia coli. J Biol Chem 252:5875–5882

    PubMed  Google Scholar 

  15. Guarnieri C, Ventura C, Georgountzos A, Muscari C, Budini R (1985) Involvement of superoxide radicals on adrenochrome formation stimulated by arachidonic acid in bovine heart sarcolemmal vescicles. Biochim Biophys Acta 838:355–360

    PubMed  Google Scholar 

  16. Hughes J (1981) Peripheral opiate receptor mechanism. Trends in Pharmacol Sci 2:21–24

    Article  Google Scholar 

  17. Ichikawa Y, Mason HS (1977) Distribution of cytochrome P-450 and related redox systems among hepatocyte membranes. In: King TE (ed) Oxidases and Related Redox Systems, Proceedings of the Second International Symposium, Vol 2, University Park Press, Baltimore, pp 605–625

    Google Scholar 

  18. Kuhl PW (1985) A redox cyclic model for the action of β-adrenoceptor agonists. Experientia 41:1118–1222

    Article  PubMed  Google Scholar 

  19. Lamers JMJ, Stinis JT (1981) An electrogenic Na+/Ca2+ antiporter in addition to the Ca2+ pump in cardiac sarcolemma. Biochim Biophys Acta 640:521–534

    PubMed  Google Scholar 

  20. Liochev S, Fridovich I (1986) The vanadate-stimulated oxidation of NAD(P)H by biomembranes is a superoxide-initiated free radical reaction. Arch Biochem Biophys 250:139–145

    Article  PubMed  Google Scholar 

  21. Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    Article  PubMed  Google Scholar 

  22. Low H, Crane FL (1976) Hormone regulated redox function in plasma membranes. FEBS Lett 68:157–159

    Article  PubMed  Google Scholar 

  23. Low H, Crane FL, Patrick EJ, Patten GS, Clark MG (1984) Properties and regulation of a transplasma membrane redox system of perfused rat heart. Biochim Biophys Acta 804:253–260

    Article  PubMed  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  25. Marzullo G, Hine B (1960) Opiate receptor function may be modulated through an oxidation-reduction mechanism. Science 208:1171–1173

    Google Scholar 

  26. Mukerjee SP, Lynn WS (1977) Reduced nicotinamide adenine dinucleotide phosphate oxidase in adipocyte plasma membrane and its activation by insulin. Arch Biochem Biophys 184:69–76

    Article  PubMed  Google Scholar 

  27. Ostroy SE (1977) Rhodopsin and the visual process. Biochim Biophys Acta 463:91–125

    PubMed  Google Scholar 

  28. Parrat JR (1986) Opioid receptors in the cardiovascular system. In: Verlag F (ed) Progress in Pharmacology, Vol 6, New York, pp 97–110

  29. Paterson SJ, Robson LE, Kosterlitz HW (1983) Classification of opioid receptors. Br Med Bull 39:31–36

    PubMed  Google Scholar 

  30. Prior TI, Patel V, Drummond GI (1985) Inactivation of the β-adrenergic receptor in cardiac muscle by dithiols. Can J Physiol Pharmacol 63:932–936

    PubMed  Google Scholar 

  31. Reeves JP, Sutko JL (1980) Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science 208:1461–1464

    PubMed  Google Scholar 

  32. Sawynok J, Pinsky C, La Bella FS (1979) Minireview on the specificity of naloxone as an opiate antagonist. Life Sci 25:1621–1632

    Article  PubMed  Google Scholar 

  33. Smith JR, Simon EJ (1980) Selective protection of stereospecific enkephalin and opiate binding agonist inactivation by N-ethylmaleimide: evidence for two classes of opiate receptors. Proc Natl Acad Sci 77:281–284

    PubMed  Google Scholar 

  34. Sottocasa GL, Kuylenstierna B, Ernester L, Bergstrand A (1967) An electron transport system associated with the outer membrane of liver mitochondria. J Cell Biol 32:415–437

    Article  PubMed  Google Scholar 

  35. Strauss WL, Venter JC (1985) A sulfhydryl group of the canine cardiac beta-adrenergic receptor observed in the absence of hormone. Life Sci 36:1699–1706

    Article  PubMed  Google Scholar 

  36. Ventura C, Muscari C, Spampinato S, Bernardi P, Caldarera CM (1987) Inhibitory action of opioid peptides on the ouabain-sensitive Na+−K+ and Ca2+-dependent ATPase activities in bovine cardiac sarcolemma. Peptides 8:709–713

    Article  PubMed  Google Scholar 

  37. Vijaya S, Crane FL, Ramasarma T (1984) A vanadate-stimulated NADH oxidase in erythrocyte membrane generates hydrogen peroxide. Mol Cell Biochem 62:175–185

    Article  PubMed  Google Scholar 

  38. Werdan K, Bauriedel G, Bozsik M, Krawietz W, Erdmann E (1980) Effects of vanadate in cultured rat heart muscle cells: vanadate transport, intracellular binding and vanadate-induced changes in beating and in active cation flux. Biochim Biophys Acta 597:364–383

    PubMed  Google Scholar 

  39. Wright M, Drummond GI (1983) Inactivation of the β-adrenergic receptor in the skeletal muscle by dithiols. Biochem Pharmacol 32:509–515

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, C., Guarnieri, C., Bastagli, L. et al. Opioids stimulate sarcolemmal NAD(P)H-vanadate dehydrogenase activity. Basic Res Cardiol 83, 376–383 (1988). https://doi.org/10.1007/BF02005823

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02005823

Key words

Navigation