Skip to main content
Log in

Isoenzyme pattern and activity of myocardial creatine phosphokinase under heart adaptation to prolonged overload

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Three isoenzymes of creatine phosphokinase (CPK) were detected in rat heart myocardium after electrophoretic separation of the enzyme in agarose gel: MM isozyme, MB isozyme and BB isozyme. The ratio of their activities was 60:30:5. Total activity of CPK per unit mass of myocardium was increased concomitant with transformation of its isoenzyme spectrum during the early stage of heart adaptation to the increased loading caused by aortic constriction. By the third day of cardiac hyperfunction, relative BB isozyme activity in the heart had increased to 15%, relative activity of the hybrid MB isozyme was increased to 40%, and relative activity of the main muscle MM isozyme was decreased to 45%. The relative increase in the activity of BB isozyme appears to reflect a preference for accumulation of the most functionally effective, short-lived isoenzymes — which play the key role in adaptation of tissues and systems to long-term loading.

Zusammenfassung

Aufgrund elektrophoretischer Trennung in Agarose-Gel wurden im Rattenmyokard 3 Isoenzyme der Kreatinphosphokinase (CPK) entdeckt: MM-Isoenzym, MB-Isoenzym und BB-Isoenzym. Das Verhältnis ihrer Aktivitäten betrug 60:30:5. Die Total-Aktivität der Kreatinphosphokinase pro Masseneinheit des Myokards war im Frühstadium der Adaptation des Herzens an erhöhte Belastung (Aortenkonstriktion) gesteigert, gleichzeitig ergab sich eine Transformation des Isoenzymspektrums. Am dritten Tag der Mehrbelastung war die BB-Isoenzym-Aktivität auf 15% angestiegen, die Aktivität des Hybriden MB-Isoenzyms auf 40% und die relative Aktivität des MM-Isoenzyms auf 45% vermindert. In dem relativen Anstieg der Aktivität des BB-Isoenzyms erscheint die bevorzugte Akkumulation der funktionell effektivsten kurzlebigen Isoenzyme zum Ausdruck zu kommen, welche eine Schlüsselrolle bei der Anpassung von Geweben und Systemen an langdauernde Belastung spielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amstrong, J. B., J. Lowden, A. Sherwin: Brain isoenzyme of creatine kinase. J. Biol. Chem.252, 3105–3120 (1977).

    PubMed  Google Scholar 

  2. Aschenbrenner, V., R. Zak, A. F. Cutilletta, M. Rabinowitz: Effect of hypoxia on degradation of mitochondrial components in rat cardiac muscle. Amer. J. Physiol.221, 1418–1425 (1971).

    PubMed  Google Scholar 

  3. Bhan, A. K., J. Scheuer: Effects of physical training on cardiac actomyosin adenosine triphosptase activity. Amer. J. Physiol.223, 1486–1490 (1972).

    PubMed  Google Scholar 

  4. Carajatii, M., J. Perriard, H. Eppenberger: Creatine kinase in cultures derived from embryonic chicken muscle degradation and modulation of synthesis. Experientia35, 959 (1979).

    Google Scholar 

  5. Chesnokov, V. N., N. P. Mertvetzov, R. I. Solganin: Selective sensitivity of the hexokinase induced isoenzyme of the rat liver to the action of proteolytic enzymes. Biochimia (Moscow)39, 294–298 (1974).

    Google Scholar 

  6. Dawson, D.: Creatine kinase from brain: kinetic aspects. J. Neurochemistry17, 65–74 (1970).

    Google Scholar 

  7. Goldberg, A. L., F. Dice: Intracellular protein degradation in mammalian and bacterial cells. Ann. Rev. Biochem.43, 835–859 (1974).

    Article  PubMed  Google Scholar 

  8. Goto, I., S. Katsuki: Creatine phosphokinase isozymes in pathological human serum. Clinica chimica30, 795–799 (1979).

    Google Scholar 

  9. Griffits, J., G. Handschuh: Creatine kinase isoenzyme MB in myocardial infarction: methods compared. Clin. Chem.23, 567–570 (1977).

    PubMed  Google Scholar 

  10. Kendzick-Jones, J., S. V. Perry: Protein synthesis and enzyme response to contractile activity in skeletal muscle. Nature213, 406–408 (1967).

    PubMed  Google Scholar 

  11. Martin, A., M. Rabinowitz, R. Zak: Measurements of half life of rat cardiac myosin heavy chain with leucyl t-RNA used a precursol pool. J. Biol. Chem.252, 3422–3429 (1977).

    PubMed  Google Scholar 

  12. Meerson, F. Z.: The myocardium in hyperfunction, hypertrophy and heart failure. Circulat. Res.25 (Suppl. 2), 1–163 (1969).

    Google Scholar 

  13. Meerson, F. Z.: Adaptation, deadaptation and insufficiency of the heart (Moscow 1978).

  14. Meerson, F. Z., G. Alekhina: Action of intensity of contractile function of muscle cells of the heart on the DNA synthesis in intermediate connective tissue of the myocardium. Acta anat.70, 559–567 (1968).

    PubMed  Google Scholar 

  15. Meerson, F., N. Javich, M. Lerman: Role of total ribonucleic acid concentration and the ratio of translating and non-translating ribosomes in the development of cardiac compensatory hypertrophy. Circulat. Res.34 and35 (Suppl. III), 43–49 (1974).

    Google Scholar 

  16. Meerson, F., M. Vyalich: Metabolic processes in myocardium inexperimental heart failure. Voprosy meditsin. Khimii (Moscow)6, 1–5 (1960).

    Google Scholar 

  17. Meerson, F., J. Zaletajeva, S. Laguthev, M. Pshennicova: Structure and mass of mitochondria in the process of compensatory hyperfunction and hypertrophy of the heart. Exp. Cell Res.36, 568–578 (1964).

    Article  PubMed  Google Scholar 

  18. Mertvetsov, N. R., V. A. Saprykiv, N. J. Chesnokov: Induction in rat liver under the action of the cortisole of tyrosine aminase isoenzymes highly sensitive to the action of proteases. Biochimia (Moscow)39, 39–44 (1974).

    Google Scholar 

  19. Morkin, E., T. P. Ashford: Myocardial DNA synthesis in experimental cardiac hypertrophy. Amer. J. Physiol.215, 1409–1413 (1968).

    PubMed  Google Scholar 

  20. Ogunro, E. A., D. J. Hearse, J. P. Shillingford: Creatine kinase isoenzymes: their separation and quantitation. Cardiovasc. Res.11, 94–102 (1977).

    PubMed  Google Scholar 

  21. Penpargkul, S., D. I. Repke, A. M. Katz, J. Scheuer: Effect of physical training on calcium transport by rat cardiac sarcoplasmic reticulum. Circulat. Res.40, 134–138 (1977).

    PubMed  Google Scholar 

  22. Perry, S. V.: Development and specialization in muscle and the biochemistry of dystrophies. J. Neurol. Science12, 289–306 (1971).

    Article  Google Scholar 

  23. Rabinowitz, M.: Protein synthesis and turnover in normal and hypertrophied heart. Amer. J. Cardiol.31, 202–210 (1973).

    Article  PubMed  Google Scholar 

  24. Roberts, R., B. E. Sobel: Creatine kinase isoenzymes in the assessment of heart disease. Amer. Heart J.95, 521–528 (1978).

    Article  PubMed  Google Scholar 

  25. Szasz, G., W. Gruber: Creatine kinase in serum. Differences in substrate affinity among the isoenzymes. Clin. Chem.24, 245–249 (1978).

    PubMed  Google Scholar 

  26. Turner, D., H. Eppenberger: Developmental changes in creatine kinase and aldolase isoenzymes and their possible function in association with contractile elements. Enzyme15, 224–238 (1973).

    PubMed  Google Scholar 

  27. Vyalich, M.: Adaptation of myocardial enzymes to various functional states of the heart. In: “Problems of biochemical adaptation” (Moscow) 86–94 (1966).

  28. Wallman, T., H. Kuhn, G. Pettioni, D. Turner, H. W. Eppenberger: Localization of creatine kinase isoenzymes in myofibrils. J. Cell Biol.75, 318–325 (1977).

    Article  PubMed  Google Scholar 

  29. Wong, P. C. P., A. F. Smith: Biochemical differences between the MB- and MM-isoenzymes of creatine kinase. Clin. Chim. Acta68, 147–158 (1976).

    Article  PubMed  Google Scholar 

  30. Zak, R., T. Dowell, A. Martin, M. Rabinowitz: Protein synthesis in workoverloaded myocardium. In Heart Overloading, edited by P. Y. Hatt. Paris, INSERM, 283–295 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meerson, F.Z., Javich, M.P. Isoenzyme pattern and activity of myocardial creatine phosphokinase under heart adaptation to prolonged overload. Basic Res Cardiol 77, 349–358 (1982). https://doi.org/10.1007/BF02005336

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02005336

Key words

Navigation