Basic Research in Cardiology

, Volume 81, Issue 6, pp 636–645 | Cite as

Acute myocardial ischaemia in the anaesthetised pig: local catecholamine release and its relation to ventricular fibrillation

  • F. M. McDonald
  • H. Knopf
  • S. Hartono
  • W. Polwin
  • A. Bischoff
  • Hj. Hirche
  • K. Addicks
Original Contributions

Summary

In anaesthetised open-chest pigs, sequential myocardial samples were obtained before and after occlusion of the distal half of the LAD. These samples were analysed histofluorimetrically to determine the density of catecholamine containing neurones in each sample (quantified morphometrically), and radioenzymatically for total tissue noradrenaline content. Following coronary artery occlusion, 75% of the animals (24 out of 32) died in ventricular fibrillation in the first 30 min, the other 25% (8/32) survived the first 60 min of myocardial ischaemia. Coronary artery occlusion led to a significant reduction in the density of fluorescing fibres in the ischaemic myocardium of animals which fibrillated (from 1.25±0.2% to 0.67±0.10% at 15 min) whereas in the survivors there was no significant change in fluorescing area during the course of the experiment. Animals which fibrillated had a significant reduction in tissue noradrenaline concentration of the ischaemic myocardium (from an initial concentration of 612±72 to 402±64 ng/g ww) within the first 5 min of ischaemia. It is concluded that in this model of myocardial ischaemia, the development of ventricular fibrillation in the early phase seems to be related to the release of noradrenaline from the sympathetic neurones after the onset of myocardial ischaemia.

Key words

pig myocardial ischaemia catecholamines ventricular fibrillation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahamsson T, Holmgren S, Almgren O (1982) Noradrenaline release in acute myocardial ischaemia, a fluorescence-histochemical and biochemical study. In: Parrat JR (ed) Early arrhythmias resulting from myocardial ischaemia: Mechanisms and prevention by drugs; Macmillan Press, London, 153–169Google Scholar
  2. 2.
    Barber J, Mueller TM, Davies BG, Gill RM, Zipes DP (1985) Interruption of sympathetic and vagal-mediated afferent responses by transmural myocardial infarction. Circulation 72:623–631PubMedGoogle Scholar
  3. 3.
    Bönisch H, Bryan LJ, Henseling M, O'Donnell SR, Stockmann P, Trendelenburg U (1985) The effect of various ions on uptake2 of catecholamines. Naunyn-Schmiedeberg's Arch Pharmacol 328:407–416Google Scholar
  4. 4.
    Bosnjak ZJ, Zuperk EJ, Coon RL, Kampine JP (1979) Acute coronary artery occlusion and cardiac sympathetic afferent nerve activity. Proc Soc Exp Biol Med 161:142–148PubMedGoogle Scholar
  5. 5.
    Corr PB, Gillis RA (1978) Autonomic neural influence on the dysrhythmias resulting from myocardial infarction. Circ Res 43:1–9PubMedGoogle Scholar
  6. 6.
    Corr PB, Gross RW, Sobel BE (1984) Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 55:135–154PubMedGoogle Scholar
  7. 7.
    Covell JW, Lab MJ, Pavalec R (1981) Mechanical induction of paired action potentials in intact heart in situ. J Physiol (Lond) 320:34PGoogle Scholar
  8. 8.
    Da Prada M, Zürcher G (1976) Simultaneous radioenzymatic determination of plasma and tissue adrenalinc, noradrenaline and dopamine within the femtomole range. Life Sci 19:1161–1174PubMedGoogle Scholar
  9. 9.
    De la Torre JC (1980) An improved approach to histofluorescence using the SPG method for tissue monoamines. J Neurosci Methods 3:1–6PubMedGoogle Scholar
  10. 10.
    Ebert PA, Allgood RJ, Sabiston DC (1968) The antiarrhythmic effects of cardiac denervation. Ann Surg 168:728–734PubMedGoogle Scholar
  11. 11.
    Felder RB, Thames MD (1979) Interaction between cardiac receptors and sinoaortic baroreceptors in the control of efferent cardiac sympathetic nerve activity during myocardial ischemia in dogs. Circ Res 45:728–736PubMedGoogle Scholar
  12. 12.
    Fiebig ER, Trendelenburg U (1978) The kinetic constants for the extraneuronal uptake and metabolism of3H-(−)noradrenaline in the perfused rat heart. Naunyn-Schmiedeberg's Arch Pharmacol 303:37–45Google Scholar
  13. 13.
    Fowlis RAF, Sang CTM, Lundy PM, Ahuja SP, Colhoun H (1974) Experimental coronary artery ligation in conscious dogs six months after bilateral cardiac sympathectomy. Am Heart J 88:748–757PubMedGoogle Scholar
  14. 14.
    Gettes LS, Hill JL, Norflete E, Lopez GF (1981) The use of K+ sensitive electrodes to gain an understanding of myocardial ischemia. In: Lübbers DW, Acker H, Buck RP, Eisenman G, Kessler M, Simon W (eds) Progress in enzyme and ion-selective electrodes; Springer-Verlag, Berlin, 171–178Google Scholar
  15. 15.
    Graefe KH, Henseling M (1983) Neuronal and extraneuronal uptake and metabolism of catecholamines. Gen Pharmac 14:27–33PubMedGoogle Scholar
  16. 16.
    Haase, M, Schiller U (1969) Zur zeitlichen Parallelität zwischen der Aktivität ektopischer Schrittmacher und dem Eintritt von Kammerflimmern nach Ligatur eines Hauptkoronarastes beim Hund. Acta Biol ed Ger 23:413–422Google Scholar
  17. 17.
    Hirche HJ, Franz Chr, Bös L, Bissig R, Lang R, Schramm M (1980) Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12:579–593PubMedGoogle Scholar
  18. 18.
    Hirche HJ, Heinrichs J, Schaefer HE, Schramm M (1981) Preparation and analysis of heart and skeletal muscle specimens with LAMMA. Fresenius Z Anal Chem 308:224–228Google Scholar
  19. 19.
    Hirche HJ, McDonald FM, Polwin W, Addicks K (1985) Vicious cycle of catecholamines and K+ in cardiac ischemia. J Cardiovasc Pharmacol 7 (Suppl 5):S71-S75PubMedGoogle Scholar
  20. 20.
    Holmgren S, Abrahamsson T, Almgren O (1985) Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: Fluorescence microscopic appearance in the normal state and after ischemia. Basic Res Cardiol 80:18–26PubMedGoogle Scholar
  21. 21.
    Holmgren S, Abrahamsson T, Almgren O, Eriksson B-M (1981) Effect of ischaemia on the adrenergic neurones of the rat heart: a fluorescence histochemical and biochemical study. Cardiovasc Res 15:680–689PubMedGoogle Scholar
  22. 22.
    Iversen LL (1967) The uptake and storage of noradrenaline in sympathetic nerves. Cambridge University Press, London pp 114–135Google Scholar
  23. 23.
    Janse MJ, Kleber AG (1981) Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res 49:1069–1081PubMedGoogle Scholar
  24. 24.
    Jonsson G (1971) Quantitation of fluorescence of biogenic monoamines. Prog Histochem Cytochem 4:299–334Google Scholar
  25. 25.
    Kaplinski E, Ogawa S, Balke CW, Dreifus LS (1971) Two periods of early ventricular arrhythmia in the canine acute myocardial infarction model. Circulation 60:397–403Google Scholar
  26. 26.
    Kleber AG (1983) Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts Circ Res 52:442–450PubMedGoogle Scholar
  27. 27.
    Lown B, Verrier RL (1976) Neural activity and ventricular fibrillation. New Eng J Med 294:1165–1170PubMedGoogle Scholar
  28. 28.
    Lown B, Verrier RL, Corbalan R (1973) Psychological stress and during the early phase of acute coronary occlusion. Pflüg Arch 403 (Suppl):R 22Google Scholar
  29. 29.
    Martin C, Kirchengast M, Hockamp M, Wilhelm W, Budden M, Meesmann W (1985) Local release of noradrenaline in the ischaemic myocardium during the early phase of acute coronary occlusion. Pflüg Arch 403 (Suppl):R 22Google Scholar
  30. 30.
    Meesmann W, Stephan K, Abendroth R-R, Menken U, Wiegand V (1977) Frühe Arrhythmien, insbesondere Kammerflimmern, nach akutem, experimentellem Koronarverschluß und Beta-Rezeptorblocker. In: Mäurer W, Schömig A, Dietz R, Lichtlen P (Hrsg) Betablockade 1977: Internationales Symposium Rottach-Egern; Georg Thieme Verlag, Stuttgart, 244–254Google Scholar
  31. 31.
    Meesmann W, Stephan K, Schley H, Gülker H (1975) Zur Problematik einer Differentialtherapie der Arrhythmien beim akuten Herzinfarkt. Dtsch Med Wochenschr 100:945–960Google Scholar
  32. 32.
    Millard RW (1981) Induction of functional coronary collaterals in the swine heart. Basic Res Cardiol 76:468–473PubMedGoogle Scholar
  33. 33.
    Muntz KH, Hagler HK, Boulas J, Willerson JT, Buja LM (1984) Redistribution of catecholamines in the ischemic zone of the dog heart. Am J Path 114:64–78PubMedGoogle Scholar
  34. 34.
    Opie LH, Nathan D, Lubbe WF (1979) Biochemical aspects of arrhythmogenesis and ventricular fibrillation. Am J Cardiol 43:131–148PubMedGoogle Scholar
  35. 35.
    Podzuweit T, Dalby AJ, Cherry GW, Opie LH (1978) Cyclic AMP levels in ischaemic and non-ischaemic myocardium following coronary artery ligation. J Mol Cell Cardiol 10:81–94PubMedGoogle Scholar
  36. 36.
    Regan TJ, Broisman L, Haider B, Eaddy C, Oldewurtel HA (1980) Dissociation of myocardial sodium and potassium alterations in mild versus severe ischemia. Am J Physiol 238:H575-H580PubMedGoogle Scholar
  37. 37.
    Sammet S, Graefe KH (1979) Kinetic analysis of the interaction between noradrenaline and Na+ in neuronal uptake: Kinetic evidence for Co-transport. Naunyn-Schmiedeberg's Arch Pharmacol 309:99–107Google Scholar
  38. 38.
    Schaper W (1971) The collateral circulation of the heart. North Holland Press, AmsterdamGoogle Scholar
  39. 39.
    Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 55:689–701PubMedGoogle Scholar
  40. 40.
    Schömig A, Dietz R, Strasser R, Dart AM, Kübler W (1982) Noradrenaline release and inactivation in myocardial ischemia. In: Caldarera CM, Harris P (eds) Advances in studies on heart metabolism; CLUEB, Bologna, 239–244Google Scholar
  41. 41.
    Set SS, Jagdeesh C, Siddiqui HH, Arosa RB (1974) Changes in myocardial norepinephrine in Indian domestic pigs after two-stage coronary ligation. Eur J Pharmacol 27:175–179PubMedGoogle Scholar
  42. 42.
    Sharma AD, Corr PB (1983) Adrenergic factors in arrhythmogenesis in the ischemic and reperfused myocardium. Eur Heart J 4 (Suppl D):79–80Google Scholar
  43. 43.
    Stowe DF, Mathey DG, Moores WY, Glantz SA, Towsend RM, Kabra P, Chatterjee K, Parmley WW, Tyberg JV (1978) Segment stroke work and metabolism depend on coronary blood flow in the pig. Am J Physiol 234:H597-H607PubMedGoogle Scholar
  44. 44.
    White FC, Bloor CM (1981) Coronary collateral circulation in the pig: correlation of collateral flow with coronary bed size. Basic Res Cardiol 76:189–196PubMedGoogle Scholar
  45. 45.
    Wit AL, Bigger JT (1975) Possible electrophysiological mechanisms for lethal arrhythmias accompanying myocardial ischemia and infarction. Circulation 51–52 Suppl:96–115Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1986

Authors and Affiliations

  • F. M. McDonald
    • 1
  • H. Knopf
    • 1
  • S. Hartono
    • 1
  • W. Polwin
    • 1
  • A. Bischoff
    • 1
  • Hj. Hirche
    • 1
  • K. Addicks
    • 2
  1. 1.Department of Applied PhysiologyUniversity of CologneFRG
  2. 2.Department of AnatomyUniversity of CologneFRG

Personalised recommendations