Skip to main content
Log in

Acute myocardial ischaemia in the anaesthetised pig: local catecholamine release and its relation to ventricular fibrillation

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

In anaesthetised open-chest pigs, sequential myocardial samples were obtained before and after occlusion of the distal half of the LAD. These samples were analysed histofluorimetrically to determine the density of catecholamine containing neurones in each sample (quantified morphometrically), and radioenzymatically for total tissue noradrenaline content. Following coronary artery occlusion, 75% of the animals (24 out of 32) died in ventricular fibrillation in the first 30 min, the other 25% (8/32) survived the first 60 min of myocardial ischaemia. Coronary artery occlusion led to a significant reduction in the density of fluorescing fibres in the ischaemic myocardium of animals which fibrillated (from 1.25±0.2% to 0.67±0.10% at 15 min) whereas in the survivors there was no significant change in fluorescing area during the course of the experiment. Animals which fibrillated had a significant reduction in tissue noradrenaline concentration of the ischaemic myocardium (from an initial concentration of 612±72 to 402±64 ng/g ww) within the first 5 min of ischaemia. It is concluded that in this model of myocardial ischaemia, the development of ventricular fibrillation in the early phase seems to be related to the release of noradrenaline from the sympathetic neurones after the onset of myocardial ischaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrahamsson T, Holmgren S, Almgren O (1982) Noradrenaline release in acute myocardial ischaemia, a fluorescence-histochemical and biochemical study. In: Parrat JR (ed) Early arrhythmias resulting from myocardial ischaemia: Mechanisms and prevention by drugs; Macmillan Press, London, 153–169

    Google Scholar 

  2. Barber J, Mueller TM, Davies BG, Gill RM, Zipes DP (1985) Interruption of sympathetic and vagal-mediated afferent responses by transmural myocardial infarction. Circulation 72:623–631

    PubMed  Google Scholar 

  3. Bönisch H, Bryan LJ, Henseling M, O'Donnell SR, Stockmann P, Trendelenburg U (1985) The effect of various ions on uptake2 of catecholamines. Naunyn-Schmiedeberg's Arch Pharmacol 328:407–416

    Google Scholar 

  4. Bosnjak ZJ, Zuperk EJ, Coon RL, Kampine JP (1979) Acute coronary artery occlusion and cardiac sympathetic afferent nerve activity. Proc Soc Exp Biol Med 161:142–148

    PubMed  Google Scholar 

  5. Corr PB, Gillis RA (1978) Autonomic neural influence on the dysrhythmias resulting from myocardial infarction. Circ Res 43:1–9

    PubMed  Google Scholar 

  6. Corr PB, Gross RW, Sobel BE (1984) Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 55:135–154

    PubMed  Google Scholar 

  7. Covell JW, Lab MJ, Pavalec R (1981) Mechanical induction of paired action potentials in intact heart in situ. J Physiol (Lond) 320:34P

    Google Scholar 

  8. Da Prada M, Zürcher G (1976) Simultaneous radioenzymatic determination of plasma and tissue adrenalinc, noradrenaline and dopamine within the femtomole range. Life Sci 19:1161–1174

    PubMed  Google Scholar 

  9. De la Torre JC (1980) An improved approach to histofluorescence using the SPG method for tissue monoamines. J Neurosci Methods 3:1–6

    PubMed  Google Scholar 

  10. Ebert PA, Allgood RJ, Sabiston DC (1968) The antiarrhythmic effects of cardiac denervation. Ann Surg 168:728–734

    PubMed  Google Scholar 

  11. Felder RB, Thames MD (1979) Interaction between cardiac receptors and sinoaortic baroreceptors in the control of efferent cardiac sympathetic nerve activity during myocardial ischemia in dogs. Circ Res 45:728–736

    PubMed  Google Scholar 

  12. Fiebig ER, Trendelenburg U (1978) The kinetic constants for the extraneuronal uptake and metabolism of3H-(−)noradrenaline in the perfused rat heart. Naunyn-Schmiedeberg's Arch Pharmacol 303:37–45

    Google Scholar 

  13. Fowlis RAF, Sang CTM, Lundy PM, Ahuja SP, Colhoun H (1974) Experimental coronary artery ligation in conscious dogs six months after bilateral cardiac sympathectomy. Am Heart J 88:748–757

    PubMed  Google Scholar 

  14. Gettes LS, Hill JL, Norflete E, Lopez GF (1981) The use of K+ sensitive electrodes to gain an understanding of myocardial ischemia. In: Lübbers DW, Acker H, Buck RP, Eisenman G, Kessler M, Simon W (eds) Progress in enzyme and ion-selective electrodes; Springer-Verlag, Berlin, 171–178

    Google Scholar 

  15. Graefe KH, Henseling M (1983) Neuronal and extraneuronal uptake and metabolism of catecholamines. Gen Pharmac 14:27–33

    PubMed  Google Scholar 

  16. Haase, M, Schiller U (1969) Zur zeitlichen Parallelität zwischen der Aktivität ektopischer Schrittmacher und dem Eintritt von Kammerflimmern nach Ligatur eines Hauptkoronarastes beim Hund. Acta Biol ed Ger 23:413–422

    Google Scholar 

  17. Hirche HJ, Franz Chr, Bös L, Bissig R, Lang R, Schramm M (1980) Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12:579–593

    PubMed  Google Scholar 

  18. Hirche HJ, Heinrichs J, Schaefer HE, Schramm M (1981) Preparation and analysis of heart and skeletal muscle specimens with LAMMA. Fresenius Z Anal Chem 308:224–228

    Google Scholar 

  19. Hirche HJ, McDonald FM, Polwin W, Addicks K (1985) Vicious cycle of catecholamines and K+ in cardiac ischemia. J Cardiovasc Pharmacol 7 (Suppl 5):S71-S75

    PubMed  Google Scholar 

  20. Holmgren S, Abrahamsson T, Almgren O (1985) Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: Fluorescence microscopic appearance in the normal state and after ischemia. Basic Res Cardiol 80:18–26

    PubMed  Google Scholar 

  21. Holmgren S, Abrahamsson T, Almgren O, Eriksson B-M (1981) Effect of ischaemia on the adrenergic neurones of the rat heart: a fluorescence histochemical and biochemical study. Cardiovasc Res 15:680–689

    PubMed  Google Scholar 

  22. Iversen LL (1967) The uptake and storage of noradrenaline in sympathetic nerves. Cambridge University Press, London pp 114–135

    Google Scholar 

  23. Janse MJ, Kleber AG (1981) Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res 49:1069–1081

    PubMed  Google Scholar 

  24. Jonsson G (1971) Quantitation of fluorescence of biogenic monoamines. Prog Histochem Cytochem 4:299–334

    Google Scholar 

  25. Kaplinski E, Ogawa S, Balke CW, Dreifus LS (1971) Two periods of early ventricular arrhythmia in the canine acute myocardial infarction model. Circulation 60:397–403

    Google Scholar 

  26. Kleber AG (1983) Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts Circ Res 52:442–450

    PubMed  Google Scholar 

  27. Lown B, Verrier RL (1976) Neural activity and ventricular fibrillation. New Eng J Med 294:1165–1170

    PubMed  Google Scholar 

  28. Lown B, Verrier RL, Corbalan R (1973) Psychological stress and during the early phase of acute coronary occlusion. Pflüg Arch 403 (Suppl):R 22

    Google Scholar 

  29. Martin C, Kirchengast M, Hockamp M, Wilhelm W, Budden M, Meesmann W (1985) Local release of noradrenaline in the ischaemic myocardium during the early phase of acute coronary occlusion. Pflüg Arch 403 (Suppl):R 22

    Google Scholar 

  30. Meesmann W, Stephan K, Abendroth R-R, Menken U, Wiegand V (1977) Frühe Arrhythmien, insbesondere Kammerflimmern, nach akutem, experimentellem Koronarverschluß und Beta-Rezeptorblocker. In: Mäurer W, Schömig A, Dietz R, Lichtlen P (Hrsg) Betablockade 1977: Internationales Symposium Rottach-Egern; Georg Thieme Verlag, Stuttgart, 244–254

    Google Scholar 

  31. Meesmann W, Stephan K, Schley H, Gülker H (1975) Zur Problematik einer Differentialtherapie der Arrhythmien beim akuten Herzinfarkt. Dtsch Med Wochenschr 100:945–960

    Google Scholar 

  32. Millard RW (1981) Induction of functional coronary collaterals in the swine heart. Basic Res Cardiol 76:468–473

    PubMed  Google Scholar 

  33. Muntz KH, Hagler HK, Boulas J, Willerson JT, Buja LM (1984) Redistribution of catecholamines in the ischemic zone of the dog heart. Am J Path 114:64–78

    PubMed  Google Scholar 

  34. Opie LH, Nathan D, Lubbe WF (1979) Biochemical aspects of arrhythmogenesis and ventricular fibrillation. Am J Cardiol 43:131–148

    PubMed  Google Scholar 

  35. Podzuweit T, Dalby AJ, Cherry GW, Opie LH (1978) Cyclic AMP levels in ischaemic and non-ischaemic myocardium following coronary artery ligation. J Mol Cell Cardiol 10:81–94

    PubMed  Google Scholar 

  36. Regan TJ, Broisman L, Haider B, Eaddy C, Oldewurtel HA (1980) Dissociation of myocardial sodium and potassium alterations in mild versus severe ischemia. Am J Physiol 238:H575-H580

    PubMed  Google Scholar 

  37. Sammet S, Graefe KH (1979) Kinetic analysis of the interaction between noradrenaline and Na+ in neuronal uptake: Kinetic evidence for Co-transport. Naunyn-Schmiedeberg's Arch Pharmacol 309:99–107

    Google Scholar 

  38. Schaper W (1971) The collateral circulation of the heart. North Holland Press, Amsterdam

    Google Scholar 

  39. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 55:689–701

    PubMed  Google Scholar 

  40. Schömig A, Dietz R, Strasser R, Dart AM, Kübler W (1982) Noradrenaline release and inactivation in myocardial ischemia. In: Caldarera CM, Harris P (eds) Advances in studies on heart metabolism; CLUEB, Bologna, 239–244

    Google Scholar 

  41. Set SS, Jagdeesh C, Siddiqui HH, Arosa RB (1974) Changes in myocardial norepinephrine in Indian domestic pigs after two-stage coronary ligation. Eur J Pharmacol 27:175–179

    PubMed  Google Scholar 

  42. Sharma AD, Corr PB (1983) Adrenergic factors in arrhythmogenesis in the ischemic and reperfused myocardium. Eur Heart J 4 (Suppl D):79–80

    Google Scholar 

  43. Stowe DF, Mathey DG, Moores WY, Glantz SA, Towsend RM, Kabra P, Chatterjee K, Parmley WW, Tyberg JV (1978) Segment stroke work and metabolism depend on coronary blood flow in the pig. Am J Physiol 234:H597-H607

    PubMed  Google Scholar 

  44. White FC, Bloor CM (1981) Coronary collateral circulation in the pig: correlation of collateral flow with coronary bed size. Basic Res Cardiol 76:189–196

    PubMed  Google Scholar 

  45. Wit AL, Bigger JT (1975) Possible electrophysiological mechanisms for lethal arrhythmias accompanying myocardial ischemia and infarction. Circulation 51–52 Suppl:96–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft Hi 137/8-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, F.M., Knopf, H., Hartono, S. et al. Acute myocardial ischaemia in the anaesthetised pig: local catecholamine release and its relation to ventricular fibrillation. Basic Res Cardiol 81, 636–645 (1986). https://doi.org/10.1007/BF02005187

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02005187

Key words

Navigation