Skip to main content
Log in

Circling behavior in mice and rats: possible relationship to isolation-induced aggression

  • Published:
Experientia Aims and scope Submit manuscript

Summary

The relationship between circling behavior (rotation), isolation, and aggression was investigated in normal male mice and rats. Initially the animals were tested for spontaneous nocturnal rotation, then conspecific aggression and muricidal behavior was observed for mice and rats respectively. Subsequently, animals were paired on the basis of net nocturnal rotations and either group-housed or individually housed. Four weeks later all animals were retested for the same behaviors. Spontaneous nocturnal rotation increased significantly for the isolated mice but not for the group-housed animals. Moreover, 9 of the 10 isolates became aggressive and their net rotations were significantly and positively correlated with the number of biting attacks. None of the group-housed mice became aggressive. Rats, on other hand, showed a decrease in rotation and a relationship between rotation and muricidal behavior was not evident. The possible relationship between circling behavior, aggression, and territoriality is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brain, P., What does individual housing mean to a mouse? Life Sci.16 (1975) 187–200.

    Article  CAS  PubMed  Google Scholar 

  2. Christie, J. E., and Crow, T. J., Turning behavior as an index of the action of amphetamines and ephedrines on central dopamine-containing neurons. Br. J. Pharmac.43 (1971) 658–667.

    Article  CAS  Google Scholar 

  3. Denenberg, V. H., Gaulin-Kremer, E., Gandelman, R., and Zarrow, M. X., The development of standard stimulus animals for mouse (Mus musculus) aggression testing by means of olfactory bulbectomy. Anim. Behav.21 (1973) 590–598.

    Article  CAS  PubMed  Google Scholar 

  4. Desjardins, C., Maruniak, J. A., and Bronson, F. H., Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science182 (1973) 939–941.

    Article  CAS  PubMed  Google Scholar 

  5. Fentress, J. C., The tonic hypothesis and the patterning of behavior. Ann. N.Y. Acad. Sci.290 (1977) 370–395.

    Article  CAS  PubMed  Google Scholar 

  6. Gentsch, C., Lichtsteiner, M., and Feer, H., Individually housed rats exceed group-housed animals in rotational movements when exposed to a novel environment. Experientia39 (1983) 1412–1414.

    Article  CAS  PubMed  Google Scholar 

  7. Ginsburg, H. J., and Braud, W. G., A laboratory investigation of aggressive behavior in the Mongolian gerbil (Meriones unguiculatus). Psychonomic Sci.22 (1971) 54–55.

    Article  Google Scholar 

  8. Glick, S. D., and Cox, R. D., Nocturnal rotation in normal rats: correlation with amphetamine-induced rotation and effects of nigrostriatal lesions. Brain Res.150 (1978) 149–161.

    Article  CAS  PubMed  Google Scholar 

  9. Glick, S. D., Jerussi, T. P., and Fleisher, L. N., Turning in circles: the neuropharmacology of rotation. Life Sci.18 (1978) 889–896.

    Article  Google Scholar 

  10. Glick, S. D., Zimmerberg, B., and Greenstein, S., Individual differences among mice in normal and amphetamine-enhanced locomotor activity: relationship to behavioral indices of striatal asymmetry. Brain Res.105 (1976) 362–364.

    Article  CAS  PubMed  Google Scholar 

  11. Guisado, E., Fernandez-Tome, P., Garzon, J., and Del Rio, J., Increased dopamine receptor binding in the striatum of rats after long-term isolation. Eur. J. Pharmac.65 (1980) 463–464.

    Article  CAS  Google Scholar 

  12. Harrington, J. E., Recognition of territorial boundaries by olfactory cues in mice (Mus musculus L.). Z. Tierpsych.41 (1976) 295–306.

    Article  CAS  Google Scholar 

  13. Hutchins, D. A., Pearson, J. D. M., and Sharman, D. F., Striatal metabolism of dopamine in mice made aggressive by isolation. J. Neurochem.24 (1975) 1151–1154.

    Article  CAS  PubMed  Google Scholar 

  14. Hyde, J. F., and Jerussi, T. P., Sexual dimorphism in rats with respect to locomotor activity and circling behavior. Pharmac. Biochem. Behav.18 (1983) 725–729.

    Article  CAS  Google Scholar 

  15. Jerussi, T. P., A simple, inexpensive rotometer for automatically recording the dynamics of circling behavior. Pharmac. Biochem. Behav.16 (1982) 353–357.

    Article  CAS  Google Scholar 

  16. Jerussi, T. P., and Glick, S. D., Spontaneous and drug-induced rotation (circling behavior) in the Mongolian gerbil (Meriones unguiculatus). Behav. Biol.16 (1976) 241–244.

    Article  CAS  PubMed  Google Scholar 

  17. Jerussi, T. P., and Glick, S. D., Drug-induced rotation in rats without lesions: behavioral and neurochemical indices of a normal asymmetry in nigro-striatal function. Psychopharmacology47 (1976) 249–260.

    Article  CAS  PubMed  Google Scholar 

  18. Jerussi, T. P., Glick, S. D., and Johnson, C. L., Reciprocity of pre-and postsynaptic mechanisms involved in rotation as revealed by dopamine metabolism and adenylate cyclase stimulation. Brain Res.129 (1977) 385–388.

    Article  CAS  PubMed  Google Scholar 

  19. Jerussi, T. P., and Taylor, C. A., Bilateral asymmetry in striatal dopamine metabolism: implications for pharmacotherapy of schizophrenia. Brain Res.246 (1982) 71–75.

    Article  CAS  PubMed  Google Scholar 

  20. Karli, P., Vergnes, M., Eclancher, F., Schmitt, P., and Chaurand, J. P., Role of the amygdala in the control of mouse-killing behavior in the rat, in: The neurobiology of the amygdala, pp. 553–580. Ed. B. E. Eleftheriou. Plenum Press, New York 1972.

    Chapter  Google Scholar 

  21. Lindzey, G., Thiessen, D. D., and Tucker, A., Development and hormonal control of territorial marking in the male mongolian gerbil (Meriones unguiculatus). Devl Psychobiol.1 (1968) 97–99.

    Article  Google Scholar 

  22. Modigh, K., Effects of isolation and fighting in mice on the rate of synthesis of noradrenaline, dopamine and 5-hydroxytryptamine in the brain. Psychopharmacologia33 (1973) 1–17.

    Article  CAS  PubMed  Google Scholar 

  23. Morihisa, P. M., and Glick, S. D., Morphine-induced rotation (circling behavior) in rats and mice: species differences, persistence of withdrawal-induced rotation and antagonism by naloxone. Brain Res.123 (1977) 180–187.

    Article  CAS  PubMed  Google Scholar 

  24. Moyer, K. E., The Psychobiology of Aggression. Harper and Row, New York 1976.

    Google Scholar 

  25. Pycock, C. J., Turning behavior in animals. Neuroscience5 (1980) 461–514.

    Article  CAS  PubMed  Google Scholar 

  26. Robinson, T. E., Becker, J. B., and Ramirez, V. D., Sex differences in amphetamine-elicited rotational behavior and the lateralization of striatal dopamine in rats. Brain Res. Bull.5 (1980) 539–545.

    Article  CAS  PubMed  Google Scholar 

  27. Tizabi, Y., Massari, J., and Jacobowitz, D. M., Isolation-induced aggression and catecholamine variations in discrete brain areas of the mouse. Brain Res. Bull.5 (1980) 81–86.

    Article  CAS  PubMed  Google Scholar 

  28. Ungerstedt, U., Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta physiol. scand., suppl. 367 (1971) 49–68.

    Article  Google Scholar 

  29. Ungerstedt, U., and Arbuthnott, G. W., Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigro-striatal dopamine system. Brain Res.24 (1970) 485–493.

    Article  CAS  PubMed  Google Scholar 

  30. Valzelli, L., The ‘isolation syndrome’ in mice. Psychopharmacologia31 (1973) 305–320.

    Article  CAS  PubMed  Google Scholar 

  31. Valzelli, L., and Garattini, S., Biochemical and behavioral changes induced by isolation in rats. Neuropharmacology11 (1972) 17–22.

    Article  CAS  PubMed  Google Scholar 

  32. Weinstock, M., Speiser, Z., and Ashkenazi, R., Changes in brain catecholamine turnover and receptor sensitivity induced by social deprivation in rats. Psychopharmacology56 (1978) 205–209.

    Article  CAS  PubMed  Google Scholar 

  33. Winer, B. J., Statistical Principles in Experimental Design. McGraw-Hill, New York 1962.

    Book  Google Scholar 

  34. Welch, B. L., and Welch, A. S., Greater lowering of brain and adrenal catecholamines in group-housed than in individually-housed mice administered DL-α-methyltyrosine. J. Pharm. Pharmac.20 (1968) 244–246.

    Article  CAS  Google Scholar 

  35. Yamatoto, B. K., Lane, R. F., and Freed, C. R., Normal rats trained to circle show asymmetric caudate dopamine release. Life Sci.30 (1982) 2155–2162.

    Article  Google Scholar 

  36. Yoshimura, H., and Ueki, S., Biochemical correlates in mouse-killing behavior of the rat: prolonged isolation and brain cholinergic function. Pharmac. Biochem. Behav.6 (1977) 193–196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerussi, T.P., Hyde, J.F. Circling behavior in mice and rats: possible relationship to isolation-induced aggression. Experientia 41, 329–331 (1985). https://doi.org/10.1007/BF02004494

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02004494

Key words

Navigation