Skip to main content
Log in

Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder

Morphological studies on the content and distribution of microtubules in bladder epithelial cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Colchicine and other antimitotic agents have been found to inhibit the action of vasopressin and cyclic AMP on transcellular water movement in the toad bladder; functional and biochemical studies suggest that the effect of these agents is due to interference with microtubule function. To further assess this hypothesis, a quantitative ultrastructural analysis of the content and distribution of microtubules was performed on epithelial cells of bladders exposed to colchicine, vasopressin, and cyclic AMP. The content (volume density) of microtubules was estimated by a point-counting stereological technique. The results indicate that the content of assembled microtubules in the granular epithelial cells is reduced in hemibladders exposed to colchicine; this effect is dose-dependent and is estimated to be half-maximal at a colchicine concentration of 1.4×10−6 m. In contrast, the content of assembled microtubules in the granular cells is slightly (∼30%) but significantly increased after exposure of hemibladders to vasopressin (100 mU/ml) or cyclic AMP (10mm). The content of microtubules in mitochondria-rich cells was not found to be significantly altered after exposure to vasopressin. The combined results of functional, biochemical, and morphological studies provide evidence that cytoplasmic microtubules in the granular epithelial cells play a critical role in the action of vasopressin on transcellular water movement in the toad bladder. Precisely how microtubules are involved in the action of the hormone remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourguet, J., Chevalier, J., Hugon, J.S. 1976. Alterations in membrane-associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium.Biophys. J. 16:627

    PubMed  Google Scholar 

  2. Carasso, N., Favard, P., Bourguet, J. 1973. Action de la cytochalasine B sur la réponse hydrosmotique et l'ultrastructure de la vessie urinaire de la grenouille.J. Microsc. Paris 18:383

    Google Scholar 

  3. Chevalier, J., Bourguet, J., Hugon, J.S. 1974. Membrane associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment.Cell Tissue Res. 152:129

    PubMed  Google Scholar 

  4. Choi, J.K. 1963. The fine structure of the urinary bladder of the toad,Bufo marinus.J. Cell Biol. 16:53

    PubMed  Google Scholar 

  5. Croker, B.P., Tisher, C.C. 1971. Effects of fixation on vasopressin-induced formation of intercellular spaces in the toad urinary bladder.Am. J. Pathol. 63:371

    PubMed  Google Scholar 

  6. Davis, W.L., Goodman, D.B.P., Schuster, R.J., Rasmussen, H., Martin, J.H. 1974. Effects of cytochalasin B on the response of toad urinary bladder to vasopressin.J. Cell Biol. 63:986

    PubMed  Google Scholar 

  7. De Sousa, R.C., Grosso, A., Rufener, C. 1974. Blockade of the hydrosmotic effect of vasopressin by cytochalasin B.Experientia 30:175

    PubMed  Google Scholar 

  8. Di Bona, D.R., Civan, M.M., Leaf, A. 1969. The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79

    Google Scholar 

  9. Edelman, G.M. 1976. Surface modulation in cell recognition and cell growth.Science 192:218

    PubMed  Google Scholar 

  10. Goodman, D.B.P., Bloom, F.E., Battenberg, E.R., Rasmussen, H., Davis, W.L. 1975. Immuno-fluorescent localization of cyclic AMP in toad urinary bladder: Possible intercellular transfer.Science 188:1023

    PubMed  Google Scholar 

  11. Gulyassy, P.F. 1968. Metabolism of adenosine 3′5′ monophosphate by epithelial cells of the toad bladder.J. Clin. Invest. 47:2458

    Google Scholar 

  12. Handler, J.S., Orloff, J. 1973. The mechanism of action of antidiuretic hormone.In: Handbook of Physiology. Section 8, Renal Physiology. J. Orloff and R.W. Berliner, editors pp. 791–814. American Physiological Society, Washington

    Google Scholar 

  13. Handler, J.S., Preston, A.S. 1976. Study of enzymes regulating vasopressin-stimulated cyclic AMP metabolism in separated mitochondria-rich and granular epithelial cells of toad urinary bladder.J. Membrane Biol. 26:43

    Google Scholar 

  14. Hardy, M.A., Jr., Montoreano, R., Parisi, M. 1975. Colchicine dissociates the toad (Bufo arenarum) urinary bladder responses to antidiuretic hormone and to serosal hypertonicity.Experientia 31:803

    PubMed  Google Scholar 

  15. Inoué, S., Sato, H. 1967. Cell motility by labile association of molecules.J. Gen. Physiol. 50 (Suppl. I):259

    PubMed  Google Scholar 

  16. Johnson, K.A., Borisy, G.G. 1975. The equilibrium assembly of microtubulesin vitro.In: Molecules and Cell Movement. S. Inoué and R.E. Stephens, editors, pp. 119–139. Raven Press, New York

    Google Scholar 

  17. Kachadorian, W.A. 1976. The effect of colchicine on vasopressin (ADH)-induced intramembranous particle aggregation and water flow in toad bladder.Am. Soc. Kidney Int. 10:587

    Google Scholar 

  18. Kachadorian, W.A., Wade, J.B., Discala, V.A. 1975. Vasopressin: Induced structural change in toad bladder luminal membrane.Science 190:67

    PubMed  Google Scholar 

  19. Masur, S.K., Holtzman, E., Walter, R. 1972. Hormone-stimulated exocytosis in the toad urinary bladder.J. Cell Biol. 52:211

    PubMed  Google Scholar 

  20. Mizel, S.B., Wilson, L. 1972. Nucleoside transport in mammalian cells. Inhibition by colchicine.Biochemistry 11:2573

    PubMed  Google Scholar 

  21. Peachey, L.D., Rasmussen, H. 1961. Structure of the toad's urinary bladder as related to its physiology.J. Biophys. Biochem. Cytol. 10:529

    PubMed  Google Scholar 

  22. Pietras, R.J., Seeler, B.J., Szego, C.M. 1975. Influence of antidiuretic hormone on release of lysosomal hydrolase at mucosal surface of epithelial cells from urinary bladder.Nature (London)257:493

    Google Scholar 

  23. Reaven, E. 1977. Quantitative analysis of tubulin and microtubule compartments in isolated rat hepatocytes.J. Cell Biol. (in press)

  24. Reaven, E., Reaven, G. 1977. The distribution and content of microtubules in relation to transport of lipid. An ultrastructural quantitative study of the absorptive cell of the small intestine.J. Cell Biol. (in press)

  25. Scott, W.N., Sapirstein, V.S., Yoder, M.J. 1974. Partition of tissue functions in epithelia: Localization of enzymes in “mitochondria-rich” cells of toad urinary bladder.Science 184:798

    Google Scholar 

  26. Soifer, D. (editor) 1975. The Biology of Cytoplasmic Microtubules.Ann. N. Y. Acad. Sci. 253:1

  27. Spinelli, F., Gross, A., Sousa, R.C. de 1975. The hydrosmotic effect of vasopressin: A scanning electron microscope study.J. Membrane Biol. 23:139

    Google Scholar 

  28. Taylor, A. 1977. Role of microtubules and microfilaments in action of vasopressin.In: Disturbances in Body Fluid Osmolality. T.E. Andreoli, J.J. Grantham and F.C. Rector, editors. pp. 97–124. American Physiological Society, Washington

    Google Scholar 

  29. Taylor, A., Maffly, R., Wilson, L., Reaven, E. 1975. Evidence for involvement of microtubules in the action of vasopressin.Ann. N. Y. Acad. Sci. 253:723

    PubMed  Google Scholar 

  30. Taylor, A., Mamelak, M., Golbetz, H., Maffly, R. 1976. Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. I. Functional studies on the effects of antimitotic agents on the response to vasopressin.J. Membrane Biol. 40:213

    Google Scholar 

  31. Taylor, A., Mamelak, M., Reaven, E., Maffly, R. 1973. Vasopressin: Possible role of microtubules and microfilaments in its action.Science 181:347

    PubMed  Google Scholar 

  32. Ukena, T.E., Borysenko, J.Z., Karnovsky, M.J., Berlin, R.D. 1974. Effects of colchicine, cytochalasin B, and 2-deoxy-glucose on the topographical organization of surface-bound concanavalin A in normal and transformed fibroblasts.J. Cell Biol. 61:70

    Google Scholar 

  33. Weibel, E.R. 1969. Stereological principles for morphometry in electron microscopic cytology.Int. Rev. Cytol. 26:235

    Google Scholar 

  34. Wunderlich, F., Müller, R., Speth, V. 1973. Direct evidence for a colchicine-induced impairment in the mobility of membrane components.Science 182:1136

    PubMed  Google Scholar 

  35. Wilson, L., Taylor, A. 1976. Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. II. Colchicine-binding properties of toad bladder epithelial cell tubulin.J. Membrane Biol. 40:237

    Google Scholar 

  36. Yuasa, S., Urakabe, S., Kimura, G., Shirai, D., Takamitsu, Y., Orita, Y. 1975. Effect of colchicine on the osmotic water flow across the toad urinary bladder.Biochim. Biophys. Acta 413:277

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reaven, E., Maffly, R. & Taylor, A. Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. J. Membrain Biol. 40, 251–267 (1978). https://doi.org/10.1007/BF02002971

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02002971

Keywords

Navigation