, Volume 41, Issue 2, pp 152–158 | Cite as

The fish spleen: structure and function

  • R. Fänge
  • S. Nilsson

Key words

Spleen fish structure function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrahamsson, T., Holmgren, S., Nilsson, S. and Pettersson, K., Adrenergic and cholinergic effects on the heart, the lung and the spleen of the African lungfish,Protopterus aethiopicus. Acta physiol. scand.107 (1979) 141–147.PubMedGoogle Scholar
  2. 2.
    Abrahamsson, T., and Nilsson, S., Effects of nerve sectioning and drugs on the catecholamine content in the spleen of the cod,Gadus morhua. Comp. Biochem. Physiol.51C (1975) 231–233.Google Scholar
  3. 3.
    Agius, C., Phylogenetic development of melano-macrophage centres in fish. J. Zool., Lond.191 (1980) 11–31.Google Scholar
  4. 4.
    Agius, C., and Roberts, R.J., Effects of starvation on the melanomacrophage centres of fish. J. Fish Biol.19 (1981) 161–169.Google Scholar
  5. 5.
    Anderson, D.P., Roberson, B.S., and Dixon, O.W., Plaque-forming cells and humoral antibody in Rainbow trout (Salmo gairdneri) induced by immersion in aYersinia ruckeri O-antigen preparation. J. Fish. Res. Bd Can.36 (1979) 636–639.Google Scholar
  6. 6.
    Arvy, L., Splénologie, 576 p. Gauthier-Villars, Paris 1965.Google Scholar
  7. 7.
    Balashov, N.V., Fänge, R., Govyrin, V.A., Leont'eva, G.R., Nilsson, S., and Prozorovskaya, M.P., On the adrenergic system of ganoid fish: the beluga,Huso huso (Chondrostei). Acta physiol. scand.111 (1981) 435–440.PubMedGoogle Scholar
  8. 8.
    Bonnet, V., De l'influence de l'hémorragie et de l'asphyxie sur le nombre des hématies dans le sang circulant des vertébrés inférieurs. J. Physiol. Path. gén.27 (1929) 735–740.Google Scholar
  9. 9.
    Catton, W.T., Blood cell formation in certain teleost fishes. Blood6 (1951) 39–60.PubMedGoogle Scholar
  10. 10.
    Chiller, J. M., Hodkins, H. O., Chambers, V.C., and Weiser, R.S., Antibody response in Rainbow trout (Salmo gairdneri) 1. Immunocompetent cells in the spleen and anterior kidney. J. Immun.102 (1969) 1193–1201.PubMedGoogle Scholar
  11. 11.
    Davies, B.N., and Withrington, P.G., The actions of drugs on the smooth muscle of the capsule and blood vessels of the spleen. Pharm. Rev.25 (1973) 373–414.PubMedGoogle Scholar
  12. 12.
    Drâgotoiu-Untu, C., Sistemul reticulo-histocitar di splina deTinca. St. Si. cerc. Biol. Seria Zool. Bucuresti22 (1970) 337–340.Google Scholar
  13. 13.
    Drezewina, A., and Pettit, A., Sur les hyperplasies tissulaires consécutives a l'ablation de la rate chez les Ichthyopsidées. C.r. Soc. Biol. Paris56 (1904) 628–630.Google Scholar
  14. 14.
    Dustin, P., Recherches sur les organes hématopoiétiques duProtopterus Dolloi. Archs Biol.45 (1934) 1–26.Google Scholar
  15. 15.
    Dustin, P., Les housses spléniques de Schweigger-Seidel. Etude d'histologie et d'histophysiologie comparées. Archs Biol.49 (1939) 1–99.Google Scholar
  16. 16.
    Ellis, A.E., Antigen-trapping in the spleen and kidney of the plaicePleuronectes platessa. L., J. Fish. Dis.3 (1980) 413–426.Google Scholar
  17. 17.
    Etlinger, H.M., Hodgins, H.O., and Chiller, J.M., Evolution of the lymphoid system. I. Evidence for lymphocyte heterogeneity in Rainbow trout revealed by the organ distribution of mitogenic responses. J. Immun.116 (1976) 1547–1553.PubMedGoogle Scholar
  18. 18.
    Fänge, R., A comparative study of lymphomyeloid tissue in fish. Dev. comp. Immun.6, suppl. 2 (1982) 23–33.Google Scholar
  19. 19.
    Fänge, R., and Johansson-Sjöbeck, M.-L., The effect of splenectomy on the hematology and on the activity of δ-aminolevulinic acid dehydratase (ALA-D) in hemopoietic tissues of the dogfish,Scyliorhinus canicula (Elasmobrachii). Comp. Biochem. Physiol.52A (1975) 577–580.Google Scholar
  20. 20.
    Fänge, R., and Mattisson, A., The lymphomyeloid (hemopoietic) system of the Atlantic nurse shark,Ginglymostoma cirratum. Biol. Bull.160 (1981) 240–249.Google Scholar
  21. 21.
    Fänge, R., and Pulsford, A., Structural studies on lymphomyeloid tissues of the dogfish,Scyliorhinus canicula L. Cell Tiss. Res.230 (1982) 337–351.Google Scholar
  22. 22.
    Fänge, R., and Sundell, G., Lymphomyeloid tissues, blood cells and plasma proteins inChimaera monstrosa (Pisces, Holocephali). Acta zool., Stockh.50 (1969). 155–168.Google Scholar
  23. 23.
    Ferguson, H.W., The relationship between ellipsoids and melanomacrophage centres in the spleen of turbot (Scophthalmus maximus). J. comp. Path.86 (1976) 377–380.PubMedGoogle Scholar
  24. 24.
    Ferren, F.A., Role of the spleen in the immune response of teleosts and elasmobranchs. J. Florida med. Ass.54 (1967) 434–437.Google Scholar
  25. 25.
    Fey, F., Hamatologische Untersuchungen der blubildenden Gewebe niederer Wirbeltiere. Folia haemat.84 (1965) 122–146.Google Scholar
  26. 26.
    Finstad, J., and Good, R.A., Phylogenetic studies of adaptive immune response in the lower vertebrates, in: Phylogeny of Immunity, pp. 173–189. Eds R.T. Smith, P.A. Miescher and R.A. Good. Univ. Florida Press, Gainesville 1966.Google Scholar
  27. 27.
    Fujii, T., Electron microscopy of the lencocytes of the typhlosome in ammocoetes, with special attention to the antibody-producing cells. J. Morph.173 (1981) 87–100.Google Scholar
  28. 28.
    Haider, G., Beitrag zur Kenntnis der mikroskopischen Anatomie der Milz einiger Teleostier. Zool. Anz.177 (1966) 348–367.Google Scholar
  29. 29.
    Hevesy, G., Lockner, D., and Sletten, K., Iron metabolism and erythrocyte formation in fish. Acta physiol. scand.60 (1964) 256–266.PubMedGoogle Scholar
  30. 30.
    Holmgren, S., Sympathetic innervation of the coeliac artery from a teleost,Gadus morhua. Comp. Biochem. Physiol.60C (1978) 27–32.Google Scholar
  31. 31.
    Holmgren, S., and Nilsson, S., Drug effects on isolated artery strips from two teleosts,Gadus morhua andSalmo gairdneri. Acta physiol. scand.90 (1974) 431–437.Google Scholar
  32. 32.
    Holmgren, S., and Nilsson, S., Effect of some adrenergic and cholinergic drugs on isolated spleen strips from the cod,Gadus morhua. Eur. J. Pharmac.32 (1975) 163–169.Google Scholar
  33. 33.
    Holmgren, S., and Nilsson, S., Effects of denervation, 6-hydroxy-dopamine and reserpine on the cholinergic and adrenergic responses of the spleen of the cod,Gadus morhua. Eur. J. Pharmac.39 (1976) 53–59.Google Scholar
  34. 34.
    Holmgren, S., and Nilsson, S., Neuropharmacology of adrenergic neurons in teleost fish. Comp. Biochem. Physiol.72C (1982) 289–302.Google Scholar
  35. 35.
    Johansson-Sjöbeck, M.-L., The effects of splenectomy on the hematology and on the activity of delta-aminolevulinic acid dehydratase (ALA-D) in hematopoietic tissues of the European eel,Anguilla anguilla. Comp. Biochem. Physiol.63A (1979) 333–338.Google Scholar
  36. 36.
    Jordan, H.E., The evolution of blood-forming tissues. Q. Rev. Biol.8 (1933) 645–655.Google Scholar
  37. 37.
    Jordan, H.E., and Speidel, C.C., Blood formation in the African lungfish, under normal conditions and under conditions of prolonged activation and recovery. J. Morph.51 (1931) 319–371.Google Scholar
  38. 38.
    Kanesada, A., A phylogenetical survey of hemocytopoietic tissues in submammalian vertebrates. Bull. Yamaguchi med. School4 (1956) 1–22.Google Scholar
  39. 39.
    Knisely, M.H., I. Microscopic observations of the circulatory system of living unstimulated spleens. Anat. Rec.65 (1936) 131–148.Google Scholar
  40. 40.
    Lobb, C.J., and Clem, L.W., Fish lymphocytes differ in the expression of surface immunoglobulin. Dev. comp. Immun.6 (1982) 473–479.Google Scholar
  41. 41.
    Maas, M.G., and Bootsma, R., Uptake of bacterial antigens in the spleen. Dev. comp. Immun., suppl.2 (1982) 47–52.Google Scholar
  42. 42.
    MacKenzie, D.W., Whipple, A.O., and Wintersteiner, M.P., Studies on the microscopic anatomy and physiology of living transilluminated mammalian spleens. Am. J. Anat.68 (1941) 397–456.Google Scholar
  43. 43.
    Matthews, L.H., and Parker H.W., Note on the anatomy and biology of the basking shark (Cetorhinus maximus). Proc. zool. Soc. Lond.120 (1950) 535–576.Google Scholar
  44. 44.
    Mattisson, A., and Fänge, R., The cellular structure of the Leydig organ in the shark,Etmopterus spinax (L.). Biol. Bull.162 (1982) 182–194.Google Scholar
  45. 45.
    Miescher-Ruesch, F., Über das Leben des Rhein-Lachses in Süsswasser. I. Abhandlung: Die Milz des Rhein-Lachses und ihre Veränderungen. Arch. Anat. Physiol. (Anat. Abt.), (1881) 193–218.Google Scholar
  46. 46.
    Millot, J., Nathony, J., and Robineau, D., Anatomie de laLatimeria chalumae, tome III, pp. 133–134. Ed. Centre national de la Recherche scientifique, Paris 1978.Google Scholar
  47. 47.
    Mislin, H., Der Phasenweschsel des Rheinlachses (Salmo salar L.) unter besonderer Berücksichtigung des Ernährungsapparates. Revue suisse Zool., suppl.48 (1941) 1–181.Google Scholar
  48. 48.
    Morrow, W.J.W., Harris, J.E., and Pulsford, A., Immunological responses of the dogfish (Scyliorhinus canicula L.). Acta zool., Stockh.63 (1982) 153–159.Google Scholar
  49. 49.
    Murata, H., Comparative studies of the spleen in submammalian vertebrates I. Topographical anatomy and relative weight of the spleen. Okajimas Folia anat. jap.33 (1959a) 1–9.Google Scholar
  50. 50.
    Murata, H., Comparative studies of the spleen in submammalian vertebrates II. Minute structure of the spleen with special reference to the periarterial lymphoid sheath. Bull. Yamaguchi med. School6 (1959b) 83–105.Google Scholar
  51. 51.
    Neale, N.L., and Chavin, W., Lymphocytic tissue alterations during the primary immune response of the goldfish (Carassius auratus L.). Michigan Academician3 (1971) 23–30.Google Scholar
  52. 52.
    Nilsson, S., On the adrenergic system of ganoid fish: the Florida spotted gar,Lepisosteus platyrhincus (Holostei). Acta physiol. scand.111 (1981) 447–454.PubMedGoogle Scholar
  53. 53.
    Nilsson, S., Autonomic nerve function in the vertebrates, 253 p. Springer Verlag, Berlin/Heidelberg/New York 1983.Google Scholar
  54. 54.
    Nilsson, S., and Grove, D.J., Adrenergic and cholinergic innervation of the spleen of the cod,Gadus morhua. Eur. J. Pharmac.28 (1974) 135–143.Google Scholar
  55. 55.
    Nilsson, S., and Holmgren, S., Uptake and release of catecholamines in sympathetic nerve fibres in the spleen of the cod,Gadus morhua. Eur. J. Pharmac.39 (1976) 41–51.Google Scholar
  56. 56.
    Nilsson, S., Holmgren, S., and Grove, D.J., Effects of drugs and nerve stimulation on the spleen and arteries of two species of dogfish,Scyliorhinus canicula andSqualus acanthias. Acta physiol. scand.95 (1975) 219–230.PubMedGoogle Scholar
  57. 57.
    Opdyke, D.F., and Opdyke, N.E., Splenic responses to stimulation inSqualus acanthias. Am. J. Physiol.221 (1971) 623–625.PubMedGoogle Scholar
  58. 58.
    Ortiz-Muniz, G., and Sigel, M.M., Antibody synthesis in lymphoid organs of two marine teleosts. J. reticuloendoth. Soc.9 (1971) 42–52.Google Scholar
  59. 59.
    Pulsford, A., Fänge, R., and Morrow, W.J.W., Cell types and interactions in the spleen of the dogfishScyliorhinus canicula L.; an electron microscopic study. J. Fish Biol.21 (1982) 649–662.Google Scholar
  60. 60.
    Rafn, S., and Wingstrand, K.G., Structure of intestine, pancreas and spleen of the Australian lungfish,Neoceratodus forsteri. Zool. Scripta10 (1981) 223–239.Google Scholar
  61. 61.
    Reite, O.B., The evolution of vascular smooth muscle responses to histamine and 5-hydroxytryptamine. I. Occurrence of stimulatory actions in fish. Acta physiol. scand.75 (1969) 221–239.PubMedGoogle Scholar
  62. 62.
    Sailendri, K., and Mhukkaruppan, V.R., The immune response of the teleostTilapia mossambica to soluble and cellular antigen. J. exp. Zool.191 (1975) 271–382.Google Scholar
  63. 63.
    Schmidt-Nielsen, S., and Schmidt-Nielsen, K., Grösse und Eisengehalt der Milz der Forelle. Norske Vidensk Selsk Forh (Norway)12 (1939) 63–66.Google Scholar
  64. 64.
    Schweigger-Seidel, F., Untersuchungen über die Milz. Virchow's Arch.27 (1863) 460–504.Google Scholar
  65. 65.
    Smith, A.M., Potter, M., and Merchant, E.B., Antibody-forming cells in the pronephros of the teleostLepomis macrochirus. J. Immun.99 (1967) 876–882.PubMedGoogle Scholar
  66. 66.
    Tait, J., A review of the structure and function of the spleen. Br. med. J.2 (1927) 291–294.Google Scholar
  67. 67.
    Tanaka, Y., Saito, Y., and Gotoh, H., Vascular architecture and intestinal hematopoietic nests of two cyclostomes,Eptatretus burgeri and ammocoetes ofEntosphenus reissneri. J. Morph.170 (1981) 71–93.PubMedGoogle Scholar
  68. 68.
    Tischendorf, F., Die Milz, in: Handbuch der mikroskopischen Anatomie des Menschen. vol. 6/6, pp. 1–968. Eds W.V. Möllendorf and W. Bargmann. Springer-Verlag, Berlin/Heidelberg/New York 1969.Google Scholar
  69. 69.
    Vairel, J., Action de l'adrénaline et de l'acetylcholine sur la rate. J. Physiol. Path. gén.31 (1933) 42–52.Google Scholar
  70. 70.
    Wahlqvist, I., and Nilsson, S., Sympathetic nervous control of the vasculature in the tail of the Atlantic cod,Gadus morhua. J. comp. Physiol.144 (1981) 153–156.Google Scholar
  71. 71.
    Walvig, F., Blood and parenchymal cells in the spleen of the icefishChaenocephalus aceratus (Lönnberg). Nytt Magasin Zool. (Norway)6 (1958) 111–120.Google Scholar
  72. 72.
    White, R.G., Antigen transport in the spleen. Immun. today2 (1981) 150–151.Google Scholar
  73. 73.
    Winberg, M., Holmgren, S., and Nilsson, S., Effects of denervation and 6-hydroxydopamine on the activity of choline acetyltransferase in the spleen of the cod,Gadus morhua. Comp. Biochem. Physiol.69C (1981) 141–143.Google Scholar
  74. 74.
    Yamamoto, K.I., Itazawa, Y., and Kobayashi, H., Supply of erythrocytes into the circulating blood from the spleen of exercised fish. Comp. Biochem. Physiol.65A (1980) 5–11.Google Scholar
  75. 75.
    Yamamoto, K., Itazawa, Y., and Kobayashi, H., Erythrocyte supply from the spleen and hemoconcentration in hypoxic yellowtail. Marine Biol.73 (1983) 221–226.Google Scholar
  76. 76.
    Yoffey, J.M., A contribution to the study of the comparative histology and physiology of the spleen, with reference chiefly to its cellular constituents. I. In fishes. J. Anat.63 (1929) 314–344.Google Scholar
  77. 77.
    Yu, M.-L., Sarot, D.A., Filazzola, R.J., and Perlmutter, A., Effects on splenectomy on the immune response of the Blue gouramiTrichogaster trichopterus, to infectious pancreatic necrosis (IPN) virus. Life Sci.9 part II (1970) 749–755.Google Scholar
  78. 78.
    Zapata, A., Splenic erythropoiesis and thrombopoiesis in elasmobranchs. An ultrastructural study. Acta zool., Stockh.61 (1980) 59–64.Google Scholar
  79. 79.
    Zapata, A., Lymphoid organs of teleost fish. III. Splenic lymphoid tissue ofRutilus rutilus andGobio gobio. Dev. comp. Immun.6 (1982) 87–94.Google Scholar
  80. 80.
    Zwillenberg, H.H.L., Bau und Funktion der Forellenmilz. Hans Huber, Bern/Stuttgart 1964.Google Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • R. Fänge
    • 1
  • S. Nilsson
    • 1
  1. 1.Department of ZoophysiologyUniversity of GöteborgGöteborg(Sweden)

Personalised recommendations