Agents and Actions

, Volume 41, Issue 3–4, pp 193–199 | Cite as

Effects of certain antiarthritic agents on the synthesis of type II collagen and glycosaminoglycans in rat chondrosarcoma cultures

  • G. R. Srinivas
  • C. O. Chichester
  • H. -J. Barrach
  • A. L. Matoney
Bone and Cartilage


Cartilage destruction is a characteristic feature of osteoarthritis. Treatment with certain nonsteroidal anti-inflammatory drugs could exacerbate cartilage destruction by impairing the synthesis of cartilage matrix proteins, type II collagen and proteoglycan. In order to monitor the changes occurring in cartilage collagen synthesis, we developed a type II collagen specific ELISA. The effects of antiarthritic agents on type II collagen and glycosaminoglycan synthesis were examined in rat chondrosarcoma cultures. Drugs were added to the monolayer cultures and 4 days later the total type II collagen, as determined by the type II collagen ELISA, and glycosaminoglycan content, as measured by dimethylmethylene blue dye binding assay, was measured. All drugs except tiaprofenic acid decreased type II collagen synthesis by at least 40% at 100 μg/ml. Tiaprofenic acid at 1 μg/ml increased type II collagen content by 54% of the controls. Glycosaminoglycan synthesis was decreased by acetylsalicylic acid, diclofenac and tiaprofenac acid, at 50 μg/ml or above. Indomethacin, naproxen and dexamethasone had no effect. Interestingly, tenidap stimulated the glycoaminoglycan synthesis by 32% at 100 μg/ml. We show that the combination of chondrosarcoma cultures, type II collagen specific ELISA and dimethylmethylene blue dye binding assay serves as a useful model for screening the effects of agents capable of modulating type II collagen and glycosaminoglycan synthesis.

Key words

Immunoassay Chondrocytes Collagen type II Antiarthritic therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Hammerman,The biology of osteoarthritis. New. Engl. J. Med.320, 1322–1331 (1989).PubMedGoogle Scholar
  2. [2]
    D. R. Eyre and J. J. Wu,Collagen of fibrocartilage: A distinctive molecular phenotype in bovine meniscus. FEBS Lett.158, 265–273 (1983).CrossRefPubMedGoogle Scholar
  3. [3]
    R. Mayne,Cartilage collagens: What is their function and are they involved in articular disease? Arth. Rheum. 32, 241–246 (1989).Google Scholar
  4. [4]
    G. R. Srinivas, H.-J. Barrach and C. O. Chichester,Quantitative immunoassays to type II collagen and its cyanogen bromide peptides. J. Immunol. Meth.159, 53–62 (1993).CrossRefGoogle Scholar
  5. [5]
    B. D. Smith, G. R. Martin, E. J. Miller, A. Dorfman and R. Swarm,The nature of the collagen synthesized by a transplanted chondrosarcoma. Arch. Biochem. Biophys.166, 181–186 (1975).CrossRefPubMedGoogle Scholar
  6. [6]
    J. H. Kimura, L. S. Lohmander and V. C. Hascall,Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from Swarm rat chondrosarcoma. J. Cell. Biochem.26, 261–278 (1984).CrossRefPubMedGoogle Scholar
  7. [7]
    S. Collier and P. Ghosh,Comparison of the effects of non-steroidal antiinflammatory drugs (NSAIDs) on proteoglycan synthesis by articular cartilage explant and chondrocyte monolayer cultures. Biochem. Pharmacol.41, 1375–1384 (1991).CrossRefPubMedGoogle Scholar
  8. [8]
    H. Muir, S. L. Carney and L. G. Hall,Effects of tiaprofenic acid and other NSAIDs on proteoglycan metabolism in articular cartilage explants. Drugs25 (Suppl. 1) 15–23 (1988).Google Scholar
  9. [9]
    C. T. Bassleer, Y. E. Henrotin, J.-Y. L. Reginster and P. P. Franchimont,Effects of tiaprofenic acid and acetylsalicylic acid on human articular chondrocytes in 3-dimensional culture. J. Rheumatol.19, 1433–1438 (1992).PubMedGoogle Scholar
  10. [10]
    B. J. deVires, W. B. van den Berg, E. Vitters and B. A. Levinus van de Putte,Effects of NSAIDs on the metabolism of sulphated glycosaminoglycans in healthy and (post) arthritic murine articular cartilage. Drugs35, 24–32 (1988).PubMedGoogle Scholar
  11. [11]
    K. Fujii, K. Tajiri, S. Sai, T. Tanaka and K. Murota,Effects of nonsteroidal antiinflammatory drugs on collagen biosynthesis of cultured chondrocytes. Sem. Arth. Rheum.18, 16–18 (1989).CrossRefGoogle Scholar
  12. [12]
    A. Mauviel, F. Redini, G. Loyau and J.-P. Pujol,Modulation of extracellular matrix metabolism in rabbit articular chondrocytes and human rheumatoid synovial cells by nonsteroidal antiinflammatory drug etodolac I: Collagen synthesis. Agents and Actions31, 345–352 (1990).CrossRefPubMedGoogle Scholar
  13. [13]
    T. R. Oegema, V. C. Hascall, D. D. Dziewiatowski,Isolation and characterization of proteoglycans from the Swarm rat chondrosarcoma. J. Biol. Chem.250, 6151–6159 (1975).PubMedGoogle Scholar
  14. [14]
    R. W. Farnsdale, C. A. Sayers and A. J. Barret,A direct spectrophotometric microassay for sulfated glycoaminoglycans in cartilage cultures. Connective Tissue Res.9, 247–248 (1982).Google Scholar
  15. [15]
    R. T. Hinegardner,An improved fluorometric assay for DNA. Anal. Biochem.39, 197–201 (1971).CrossRefPubMedGoogle Scholar
  16. [16]
    Y. Henrotin, C. Bassleer and P. Franchimont,In vitro effects of etodolac and acetylsalicylic acid on human chondrocyte metabolism. Agents and Actions36, 317–323 (1992).PubMedGoogle Scholar
  17. [17]
    P. Netter, B. Barnwarth and M.-J. Royer-Morrot,Recent finding of non-steroidal antiinflammatory drugs in synovial fluid. Clin. Pharmacokinet.17, 145–162 (1989).PubMedGoogle Scholar
  18. [18]
    W. J. Wallis and P. A. Simkin,Antirheumatic drug concentrations in human synovial fluid and synovial tissue. Observations on extravascular pharmacokinetics. Clin. Pharmacokinet.8, 496–522 (1983).PubMedGoogle Scholar
  19. [19]
    M. Franke, G. Manz and J. P. Glynn,Distribution of benorylate in plasma, synovial fluid and tissue in rheumatoid arthritis. Scand. J. Rheumatol.13, 13–17 (1976).Google Scholar
  20. [20]
    H. Spahn, K. Thabe, E. Mutscheller, K. Tillmann and I. Giklor,Concentration of azapropazone in synovial tissue and fluid, Eur. J. Pharmacol.32, 303–307 (1987).CrossRefGoogle Scholar
  21. [21]
    S. Jalava, H. Saarimaa, M. Anttila and H. Sundquist,Naproxen concentrations in serum, synovial fluid and synovium. Scand. J. Rheumatol.6, 155–157 (1977).PubMedGoogle Scholar
  22. [22]
    M. Farr,Investigation of phenylbutazone in synovial fluid. J. Int. Med. Res.5, 26–29 (1977).Google Scholar
  23. [23]
    A. Gaucher, P. Netter, G. Faure, J. P. Schoeller and A. Gerarlin,Diffusion of oxyphenylbutazone into synovial fluid, synovial tissue, joint cartilage and cerebrospinal fluid. Eur. J. Clin. Pharmacol.25, 107–112 (1983).CrossRefPubMedGoogle Scholar
  24. [24]
    R. E. Peterson, R. L. Black and J. J. Bunim,Disposition of intraarticularly injected cortisone and hydrocortisone. Arth. Rheum.2, 433–439 (1959).Google Scholar
  25. [25]
    R. Luukkainen, M. Hakala, E. S. K. O. Sajanti, U. Hettuhtala, Yli-Kerttula and R. Hameenkorpi,Predictive value of synovial fluid analysis in estimating the efficacy of intraarticular corticosteroid injections in patients with rheumatoid arthritis. Ann. Rheum. Dis.51, 874–876 (1992).PubMedGoogle Scholar
  26. [26]
    A. I. Oikarinen, I. E. Vuorio, E. J. Zaragoza, A. Palotie, M. L. Chu and J. Uitto,Modulation of collagen metabolism by glucocorticoids. Receptor mediated effects of dexamethasone on collagen biosynthesis in chick embryo fibroblasts and chondrocytes. Biochem. Pharmacol.37, 1451–1462 (1988).CrossRefPubMedGoogle Scholar
  27. [27]
    P. D. Benya and J. D. Shaffer,Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell30, 215–234 (1982).CrossRefPubMedGoogle Scholar
  28. [28]
    P. D. Benya, S. R. Padilla and M. E. Nimni,The progeny of rabbit articular chondrocytes synthesize collagen types I and III and type I trimer, but not type II — verifications by cyanogen bromide peptide analysis. Biochemistry16, 865–872 (1977).CrossRefPubMedGoogle Scholar
  29. [29]
    E. J. Miller and S. Gay,The collagens: An overview and up to date. InMethods of Enzymology, Vol. 144 (Eds S. P. Colowick and N. O. Kaplan) pp. 3–41, Academic Press, FL 1987.Google Scholar
  30. [30]
    M. B. Goldring, E. Sobbat, J. M. Elwell and J. Y. Chang,Etodolac preserves cartilage specific phenotype in human chondrocytes: Effects on type II collagen synthesis and associated mRNA levels. Eur. J. Rheumatol. Inflamm.10, 10–21 (1990).PubMedGoogle Scholar
  31. [31]
    M. Shinmei, T. Kikuchi, K. Matsuda and K. Shimomura,Effects of interleukin-1 and antiinflammatory drugs on the degradation of human articular cartilage. Drugs35, 33–41 (1988).PubMedGoogle Scholar
  32. [32]
    E. Vignon, P. Mathieu, P. Louisot, J. Vilamitjana, M. F. Harmand and M. Richard, Phospholipase A2 activity in human osteoarthritic cartilage. J. Rheumatol.16, 35–38 (1989).Google Scholar
  33. [33]
    J.-P. Pelletier, J.-M. Cloutier and J.-M. Pelletier,In vitro effects of tiaprofenic acid, sodium salicylate and hydrocortisone on the proteoglycan metabolism of human osteoarthritic cartilage. J. Rheumatol.16, 646–655 (1989).PubMedGoogle Scholar
  34. [34]
    F. Redini, A. Mauviel, G. Loyau and J.-P. Pujol,Modulation of extracellular matrix metabolism in rabbit articular chondrocytes and human rheumatoid synovial cells by the non steroidal anti-inflammatory drug etodolac II: Glycosaminoglycan synthesis. Agents and Actions31, 358–367 (1990).CrossRefPubMedGoogle Scholar
  35. [35]
    M. K. Bansal, H. Ward and R. M. Mason,Proteoglycan synthesis in suspension cultures of Swarm rat chondrosarcoma chondrocytes and inhibition by exogeneous hyaluronate. Arch. Biochem. Biophys.246, 602–610 (1986).CrossRefPubMedGoogle Scholar
  36. [36]
    C. J. Handley, P. Brooks and D. A. Lowther,Suppression of collagen synthesis by chondrocytes by exogenous concentrations of proteoglycan subunit. Biochem. Int.1, 270–276 (1980).Google Scholar
  37. [37]
    K. D. Gibson, B. J. Segen and T. K. Audhya,The effect of β-d-xylosides on chondroitin sulphate biosynthesis in embryonic chicken cartilage in the absence of protein synthesis inhibitors. Biochem. J.162, 217–233 (1977).PubMedGoogle Scholar
  38. [38]
    A. Arufflo, I. Stamenkovic, M. Melnick, C. B. Underhill and B. Seed,CD44 is the principal cell surface receptor for hyaluronate. Cell61, 1303–1313 (1990).PubMedGoogle Scholar
  39. [39]
    M. J. Palmoski and K. D. Brandt,Effects of some nonsteroidal antiinflammatory drugs on proteoglycan metabolism and organization in canine articular cartilage. Arth. Rhem.23, 1010–1020 (1980).Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • G. R. Srinivas
    • 1
  • C. O. Chichester
    • 1
  • H. -J. Barrach
    • 2
  • A. L. Matoney
    • 1
  1. 1.Department of Pharmacology and ToxicologyUniversity of Rhode IslandKingstonUSA
  2. 2.Department of OrthopaedicsBrown University, Rhode Island HospitalProvidenceUSA

Personalised recommendations